OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 10 — Oct. 1, 2009
  • pp: 1897–1904

Two-photon absorption of quantum dots in the regime of very strong confinement: size and wavelength dependence

Yingli Qu and Wei Ji  »View Author Affiliations


JOSA B, Vol. 26, Issue 10, pp. 1897-1904 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001897


View Full Text Article

Enhanced HTML    Acrobat PDF (844 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The frequency-degenerate two-photon absorption (TPA) in glutathione-capped colloidal CdTe quantum dots with a dot radius ranging from 1.5 to 2 nm, which belongs to the regime of very strong quantum confinement, is determined unambiguously by utilizing the Z-scan technique with femtosecond laser pulses. At laser wavelengths between 720 and 950 nm, the TPA cross sections are measured to be of the order of 10 47 10 46 cm 4   s   photon 1 , with precise values depending on both the laser wavelength and the dot size. The TPA measurements are in agreement with theoretical modeling based on a spherical eight-band Pidgen and Brown model. The quantitative modeling reveals underlying factors that contribute to both the TPA–size relationship and size dispersion effects.

© 2009 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(270.4180) Quantum optics : Multiphoton processes
(160.4236) Materials : Nanomaterials

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 1, 2009
Revised Manuscript: July 30, 2009
Manuscript Accepted: August 11, 2009
Published: September 15, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Yingli Qu and Wei Ji, "Two-photon absorption of quantum dots in the regime of very strong confinement: size and wavelength dependence," J. Opt. Soc. Am. B 26, 1897-1904 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-10-1897


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538-544 (2005), and references therein. [CrossRef] [PubMed]
  2. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434-1436 (2003), and references therein. [CrossRef] [PubMed]
  3. L. A. Padilha, J. Fu, D. J. Hagan, and E. W. V. Stryland, “Two-photon absorption in CdTe quantum dots,” Opt. Express 13, 6460-6467 (2005). [CrossRef] [PubMed]
  4. L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, “Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots,” Phys. Rev. B 75, 075325 (2007). [CrossRef]
  5. S. C. Pu, M. J. Yang, C. C. Hsu, C. W. Lai, C. C. Hsieh, S. H. Lin, Y. M. Cheng, and P. T. Chou, “The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots,” Small 2, 1308-1313 (2006). [CrossRef] [PubMed]
  6. G. H. He, Q. D. Zheng, K. T. Yong, and A. Urbus, “Two-photon absorption based optical limiting and stabilization by using a CdTe quantum dot solution excited at optical communication wavelength of ~1300 nm,” Appl. Phys. Lett. 90, 181108 (2007). [CrossRef]
  7. C. R. Pidgeon and R. N. Brown, “Interband magneto-absorption and Faraday rotation in InSb,” Phys. Rev. 146, 575-583 (1966). [CrossRef]
  8. Al. L. Efros and M. Rosen, “Quantum size level structure of narrow-gap semiconductor nanocrystals: effect of band coupling,” Phys. Rev. B 58, 7120-7135 (1998). [CrossRef]
  9. Y. G. Zheng, S. G. Gao, and J. Y. Ying, “Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots,” Adv. Mater. 19, 376-380 (2007). [CrossRef]
  10. E. W. V. Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490-492 (1985). [CrossRef] [PubMed]
  11. Y. L. Qu, W. Ji, Y. G. Zheng, and J. Y. Ying, “Auger recombination and intraband absorption of two-photon-excited carriers in colloidal CdSe quantum dots,” Appl. Phys. Lett. 90, 133112 (2007). [CrossRef]
  12. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Styland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990). [CrossRef]
  13. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511-513 (1985). [CrossRef] [PubMed]
  14. J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, “Three-photon excited band edge and trap emission of CdS semiconductor nanocrystals,” Appl. Phys. Lett. 84, 4472-4474 (2004). [CrossRef]
  15. Y. V. Vandyshev, V. S. Dneprovskii, and V. I. Klimov, “Nonlinear-transmission dynamics and nonlinear susceptibilities of semicoducting microcrystals (quantum dots),” Sov. Phys. JETP 74, 144-150 (1992).
  16. H. Shinojima, J. Yumoto, and N. Uesugi, “Size dependence of optical nonlinearity of CdSSe microcrystallites doped in glass,” Appl. Phys. Lett. 60, 298-300 (1992). [CrossRef]
  17. A. V. Fedorov, A. V. Baranov, and K. Inoue, “Two-photon transitions in systems with semiconductor quantum dots,” Phys. Rev. B 54, 8627-8732 (1996). [CrossRef]
  18. K. I. Kang, B. P. McGinnis, Sandalphon, Y. Z. Hu, S. W. Koch, N. Peyghambarian, A. Mysyrowicz, L. C. Liu, and S. H. Risbud, “Confinement induced valence band mixing in CdS quantum dots observed by two photon spectroscopy,” Phys. Rev. B 45, 3465-3486 (1992). [CrossRef]
  19. P. C. Sercel and K. J. Vahala, “Analytical formalism for determining quantum-wire and quantum-dot band structure in the multiband envelop-function approximation,” Phys. Rev. B 42, 3690-3711 (1990). [CrossRef]
  20. U. Banin, C. J. Lee, A. A. Guzelian, A. V. Kadavanich, A. P. Alivisatos, W. Jaskolski, G. W. Bryant, A. L. Efros, and M. Rosen, “Size-dependent electronic level structure of InAs nanocrystal quantum dots: test of multiband effective mass theory,” J. Chem. Phys. 109, 2306-2309 (1998). [CrossRef]
  21. P. C. Sercel, A. L. Efros, and M. Rose, “Intrinsic gap states in semiconductor nanocrystals,” Phys. Rev. Lett. 83, 2394-2397 (1999). [CrossRef]
  22. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854-2860 (2003). [CrossRef]
  23. J. Singh, Physics of Semiconductors and Their Heterostructures (McGraw Hill, 1993).
  24. D. C. Hutchings and E. W. Van Stryland, “Nondegenerate two photon absorption in zinc blende semicondcutors,” J. Opt. Soc. Am. B 9, 2065-2074 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited