OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 10 — Oct. 1, 2009
  • pp: 1924–1929

Characteristics analysis of a hybrid surface plasmonic waveguide with nanometric confinement and high optical intensity

Yun Binfeng, Hu Guohua, Ji Yang, and Cui Yiping  »View Author Affiliations


JOSA B, Vol. 26, Issue 10, pp. 1924-1929 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001924


View Full Text Article

Enhanced HTML    Acrobat PDF (804 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A hybrid surface plasmonic waveguide with nanometric confinement is proposed. With interactions between high-index-contrast dielectric waveguide modes and surface plasmon modes of a very thin metal film, nanometric hybrid surface plasmon modes with high optical intensities can be formed. Characteristics of the symmetric and asymmetric hybrid surface plasmon modes, including the effective mode indices, propagation lengths, mode sizes, and power intensities at telecom wavelength (1550 nm), are investigated in detail. Simulation results show that nanometric mode confinement and a long propagation length can be realized simultaneously. The high optical power intensity and long propagation length of the nanometric hybrid surface plasmon modes are very promising for high-density photonic integration and nonlinear waveguide applications.

© 2009 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

History
Original Manuscript: April 6, 2009
Revised Manuscript: July 26, 2009
Manuscript Accepted: August 31, 2009
Published: September 16, 2009

Citation
Yun Binfeng, Hu Guohua, Ji Yang, and Cui Yiping, "Characteristics analysis of a hybrid surface plasmonic waveguide with nanometric confinement and high optical intensity," J. Opt. Soc. Am. B 26, 1924-1929 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-10-1924

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited