OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 10 — Oct. 1, 2009
  • pp: 1924–1929

Characteristics analysis of a hybrid surface plasmonic waveguide with nanometric confinement and high optical intensity

Yun Binfeng, Hu Guohua, Ji Yang, and Cui Yiping  »View Author Affiliations

JOSA B, Vol. 26, Issue 10, pp. 1924-1929 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (804 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hybrid surface plasmonic waveguide with nanometric confinement is proposed. With interactions between high-index-contrast dielectric waveguide modes and surface plasmon modes of a very thin metal film, nanometric hybrid surface plasmon modes with high optical intensities can be formed. Characteristics of the symmetric and asymmetric hybrid surface plasmon modes, including the effective mode indices, propagation lengths, mode sizes, and power intensities at telecom wavelength (1550 nm), are investigated in detail. Simulation results show that nanometric mode confinement and a long propagation length can be realized simultaneously. The high optical power intensity and long propagation length of the nanometric hybrid surface plasmon modes are very promising for high-density photonic integration and nonlinear waveguide applications.

© 2009 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

Original Manuscript: April 6, 2009
Revised Manuscript: July 26, 2009
Manuscript Accepted: August 31, 2009
Published: September 16, 2009

Yun Binfeng, Hu Guohua, Ji Yang, and Cui Yiping, "Characteristics analysis of a hybrid surface plasmonic waveguide with nanometric confinement and high optical intensity," J. Opt. Soc. Am. B 26, 1924-1929 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Nanophotonics with Surface Plasmons, V.M.Shalaev and S.Kawata, eds. (Elsevier, 2007).
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 331, 189-193 (2006). [CrossRef]
  3. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484-10503 (2000). [CrossRef]
  4. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413-422 (2005). [CrossRef]
  5. J.-T. Kim, J.-J. Ju, S. Park, M.-S. Kim, S. Koo Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16, 13133-13138 (2008). [CrossRef] [PubMed]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  8. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467-9476 (2006). [CrossRef] [PubMed]
  9. G. B. Hoffman and R. M. Reano, “Vertical coupling between gap plasmon waveguides,” Opt. Express 16, 12677-12687 (2008). [CrossRef] [PubMed]
  10. F. Kong, B.-I. Wu, H. Chen, and J. A. Kong, “Surface plasmon mode analysis of nanoscale metallic rectangular waveguide,” Opt. Express 15, 12331-12337 (2007). [CrossRef] [PubMed]
  11. A. Kumar and T. Srivastava, “Modeling of a nanoscale rectangular hole in a real metal,” Opt. Lett. 33, 333-335 (2008). [CrossRef] [PubMed]
  12. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252-5260 (2008). [CrossRef] [PubMed]
  13. T. Ogawa, D. F. P. Pile, T. Okamoto, M. Haraguchi, M. Fukui, and D. K. Gramotnev, “Numerical and experimental investigation of wedge tip radius effect on wedge plasmons,” J. Appl. Phys. 104, 033102 (2008). [CrossRef]
  14. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007). [CrossRef]
  15. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007). [CrossRef]
  16. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006). [CrossRef]
  17. Y. Binfeng, H. Guohua, and C. Yiping, “Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides,” Opt. Express 17, 3610-3618 (2009). [CrossRef] [PubMed]
  18. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinment and long-range propagation,” Nat. Photonics 2, 496-500 (2008). [CrossRef]
  19. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited