OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 10 — Oct. 1, 2009
  • pp: 1954–1958

Nonreciprocal photonic crystal delay waveguide

Cai Huang and Chun Jiang  »View Author Affiliations


JOSA B, Vol. 26, Issue 10, pp. 1954-1958 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001954


View Full Text Article

Enhanced HTML    Acrobat PDF (534 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We find that electromagnetic pulses can be greatly delayed in a two-dimensional (2D) meander-line photonic crystal waveguide, which incorporates a row of perfect electric conductor (PEC) slabs and a magnetooptical photonic crystal under a static magnetic field. The electromagnetic pulse has a one-way property with broken time-reversal symmetry and circumvents the PEC slabs to propagate through the waveguide, leading to the considerable increase of propagation path and nearly three-fold enhancement of group delay compared to the straight waveguide.

© 2009 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.3810) Optical devices : Magneto-optic systems
(130.5296) Integrated optics : Photonic crystal waveguides
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: April 24, 2009
Revised Manuscript: August 24, 2009
Manuscript Accepted: August 31, 2009
Published: September 24, 2009

Citation
Cai Huang and Chun Jiang, "Nonreciprocal photonic crystal delay waveguide," J. Opt. Soc. Am. B 26, 1954-1958 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-10-1954


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. F. Krauss, “Why do we need slow light,” Nat. Photonics 2, 448-450 (2008). [CrossRef]
  2. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447-2450 (1995). [CrossRef] [PubMed]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999). [CrossRef]
  4. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999). [CrossRef]
  5. P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005). [CrossRef]
  6. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003). [CrossRef] [PubMed]
  7. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004). [CrossRef] [PubMed]
  8. M. F. Yanik and S. Fan, “Stopping and storing light coherently,” Phys. Rev. A 71, 013803 (2005). [CrossRef]
  9. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004). [CrossRef] [PubMed]
  10. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398-9408 (2005). [CrossRef] [PubMed]
  11. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  12. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solutions,” Nat. Phys. 2, 775-780 (2006). [CrossRef]
  13. M. Povinelli, “Slow light: variable speed limit,” Nat. Phys. 2, 735-736 (2006). [CrossRef]
  14. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  15. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008). [CrossRef] [PubMed]
  16. S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834 (2008). [CrossRef]
  17. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008). [CrossRef] [PubMed]
  18. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008). [CrossRef] [PubMed]
  19. D. M. Pozar, Microwave Engineering (Wiley, 1998).
  20. J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals Molding the Flow of Light, 2nd. ed. (Princeton Univ. Press, 2008).
  21. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  22. S. Fan, “Sharp asymmetric lineshapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908-910 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited