OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 11 — Nov. 1, 2009
  • pp: 1967–1974

High-efficiency antireflection structures for terahertz self-collimating photonic crystals

Jong-Moon Park, Sun-Goo Lee, Hae Yong Park, Jae-Eun Kim, and Myung-Hyun Lee  »View Author Affiliations


JOSA B, Vol. 26, Issue 11, pp. 1967-1974 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001967


View Full Text Article

Enhanced HTML    Acrobat PDF (691 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present two types of antireflection structures for two-dimensional photonic crystals of square lattice air holes in silicon, which are embedded in homogeneous background media. One type consists of rows of air holes, and the other consists of air slots that are introduced into the photonic crystal interfaces. The finite-difference time-domain simulations show that the terahertz waves couple efficiently into and out of the self-collimating photonic crystals with the designed antireflection structures applied. The proposed antireflection structures can bring significant improvements in coupling efficiency for compact terahertz devices based on self-collimating photonic crystals.

© 2009 Optical Society of America

OCIS Codes
(260.3090) Physical optics : Infrared, far
(310.1210) Thin films : Antireflection coatings
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: July 10, 2009
Manuscript Accepted: August 21, 2009
Published: October 5, 2009

Citation
Jong-Moon Park, Sun-Goo Lee, Hae Yong Park, Jae-Eun Kim, and Myung-Hyun Lee, "High-efficiency antireflection structures for terahertz self-collimating photonic crystals," J. Opt. Soc. Am. B 26, 1967-1974 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-11-1967


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002). [CrossRef]
  2. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004). [CrossRef] [PubMed]
  3. H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87, 041108 (2005). [CrossRef]
  4. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851-863 (2000). [CrossRef]
  5. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449-4451 (2000). [CrossRef]
  6. Y. Zhao and D. Grischkowsky, “Terahertz demonstrations of effectively two dimensional photonic bandgap structures,” Opt. Lett. 31, 1534-1536 (2006). [CrossRef] [PubMed]
  7. T. Prasad, V. L. Colvin, Z. Jian, and D. M. Mittleman, “Superprism effect in a metal-clad terahertz photonic crystal slab,” Opt. Lett. 32, 683-685 (2007). [CrossRef] [PubMed]
  8. H. Liu, J. Yao, D. Xu, and P. Wang, “Propagation characteristics of two-dimensional photonic crystals in the terahertz range,” Appl. Phys. B 87, 57-63 (2007). [CrossRef]
  9. Y. Zhang, Y. Zhang, and B. Li, “Highly-efficient directional emission from photonic crystal waveguides for coupling of freely propagated terahertz waves into Si slab waveguides,” Opt. Express 15, 9281-9286 (2007). [CrossRef] [PubMed]
  10. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).
  11. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212-1214 (1999). [CrossRef]
  12. J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246-1257 (2002). [CrossRef]
  13. X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251-3253 (2003). [CrossRef]
  14. D. M. Pustai, S. Shi, C. Chen, A. Sharkawy, and D. W. Prather, “Analysis of splitters for self-collimated beams in planar photonic crystals,” Opt. Express 12, 1823-1831 (2004). [CrossRef] [PubMed]
  15. S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005). [CrossRef]
  16. B. Miao, C. Chen, S. Shi, and D. W. Prather, “A high-efficiency in-plane splitting coupler for planar photonic crystal self-collimation devices,” IEEE Photonics Technol. Lett. 17, 61-63 (2005). [CrossRef]
  17. Z. Ghattan, T. Hasek, M. Shahabadi, and M. Koch, “Coupling of free space sub-terahertz waves into dielectric slabs using PC waveguides,” Opt. Express 16, 6112-6118 (2008). [CrossRef] [PubMed]
  18. J.-M. Park, S.-G. Lee, H. Y. Park, and J.-E. Kim, “Efficient beaming of self-collimated light from photonic crystals,” Opt. Express 16, 20354-20367 (2008). [CrossRef] [PubMed]
  19. T. Baba and D. Ohsaki, “Interfaces of photonic crystals for high efficiency light transmission,” Jpn. J. Appl. Phys. 40, 5920-5924 (2001). [CrossRef]
  20. F. J. Lawrence, L. C. Botten, K. B. Dossou, and C. Martijn de Sterke, “Antireflection coatings for two-dimensional photonic crystals using a rigorous impedance definition,” Appl. Phys. Lett. 93, 121114 (2008). [CrossRef]
  21. T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Botten, “Highly efficient wide-angle transmission into uniform rod-type photonic crystals,” Appl. Phys. Lett. 87, 111107 (2005). [CrossRef]
  22. Z. Li, E. Ozbay, H. Chen, J. Chen, F. Yang, and H. Zheng, “Resonant cavity based compact efficient antireflection structures for photonic crystals,” J. Phys. D 40, 5873-5877 (2007). [CrossRef]
  23. J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Sherer, “Mode matching interface for efficient coupling of light into planar photonic crystals,” Phys. Rev. E 69, 046609 (2004). [CrossRef]
  24. B. Momeni and A. Adibi, “Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystal,” Appl. Phys. Lett. 87, 171104 (2005). [CrossRef]
  25. J. Ushida, M. Tokushima, M. Shirane, and H. Yamada, “Systematic design of antireflection coating for semi-infinite one-dimensional photonic crystals using Bloch wave expansion,” Appl. Phys. Lett. 82, 7-9 (2003). [CrossRef]
  26. S.-G. Lee, J.-S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270-4277 (2008). [CrossRef] [PubMed]
  27. S.-G. Lee, M. Yi, J. Ahn, J.-E. Kim, and H. Y. Park, “Optimization of photonic crystal interfaces for high efficient coupling of terahertz waves,” in International Conference on Infrared and Millimeter Waves/THz Electronics (IRMMW-THZ 2008) (IEEE, 2008), pp. 1-2
  28. K. S. Yee, “Numerical solution of initial boundary problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).
  29. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  30. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  31. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999), pp. 63-74.
  32. H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics, 2001), Chaps. 2 and 3. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited