OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 11 — Nov. 1, 2009
  • pp: 2007–2015

Analysis of one-dimensional high-index guiding photonic bandgap waveguides

Jie Li and Kin Seng Chiang  »View Author Affiliations

JOSA B, Vol. 26, Issue 11, pp. 2007-2015 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1017 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a detailed analysis of the guided modes of a one-dimensional photonic bandgap (PBG) waveguide that consists of a high-index guiding layer placed between two identical Bragg reflectors. Using a zigzag wave model, we calculate the modal characteristics of the waveguide including dispersion curves, field distributions, cutoff conditions, and confinement factors. We also investigate the effects of truncating the Bragg reflectors with either a high- or a low-index medium on the modal characteristics of the waveguide. The study provides a rigorous discussion of the two guiding mechanisms in the waveguide, namely index guiding and bandgap guiding. The results are useful not only for the design of PBG slab waveguides but also for a better understanding of the more complicated two-dimensional structures of the same nature, such as photonic crystal fibers and waveguides, which are not amenable to rigorous analytical studies.

© 2009 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.4170) Optical devices : Multilayers
(230.7370) Optical devices : Waveguides
(230.7400) Optical devices : Waveguides, slab

ToC Category:
Optical Devices

Original Manuscript: June 10, 2009
Manuscript Accepted: August 25, 2009
Published: October 5, 2009

Jie Li and Kin Seng Chiang, "Analysis of one-dimensional high-index guiding photonic bandgap waveguides," J. Opt. Soc. Am. B 26, 2007-2015 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Yeh, A. Yariv, and C. Hong, “Electromagnetic propagation in periodic stratified media,” J. Opt. Soc. Am. 67, 423-438 (1977). [CrossRef]
  2. S. R. A. Dods, “Bragg reflection waveguide,” J. Opt. Soc. Am. A 6, 1465-1476 (1989). [CrossRef]
  3. A. Mizrahi and L. Schachter, “Bragg reflection waveguides with a matching layer,” Opt. Express 12, 3156-3170 (2004). [CrossRef] [PubMed]
  4. B. Nistad, M. W. Haakestad, and J. Skaar, “Dispersion properties of planar Bragg waveguides,” Opt. Commun. 265, 153-160 (2006). [CrossRef]
  5. G. Lenz and J. Salzman, “Bragg reflection waveguide composite structures,” IEEE J. Quantum Electron. 26, 519-531 (1990). [CrossRef]
  6. P. M. Lambkin and K. A. Shore, “Nonlinear semiconductor Bragg reflection waveguide structures,” IEEE J. Quantum Electron. 27, 824-828 (1991). [CrossRef]
  7. C. Wachter, F. Lederer, L. Leine, U. Trutschel, and M. Mann, “Nonlinear Bragg reflection waveguide,” J. Appl. Phys. 71, 3688-3692 (1992). [CrossRef]
  8. J. Li and K. S. Chiang, “Guided modes of one-dimensional photonic bandgap waveguides,” J. Opt. Soc. Am. B 24, 1942-1950 (2007). [CrossRef]
  9. E. Simova and I. Golub, “Polarization splitter/combiner in high index contrast Bragg reflector waveguides,” Opt. Express 11, 3425-3430 (2003). [CrossRef] [PubMed]
  10. S. Dasgupta, A. Ghatak, and B. P. Pal, “Analysis of Bragg reflection waveguides with finite cladding: an accurate matrix method formulation,” Opt. Commun. 279, 83-88 (2007). [CrossRef]
  11. J. Li and K. S. Chiang, “Light guidance in a photonic bandgap slab waveguide consisting of two different Bragg reflectors,” Opt. Commun. 281, 5797-5803 (2008). [CrossRef]
  12. Y. Sakurai and F. Koyama, “Tunable hollow waveguide distributed Bragg reflectors with variable air core,” Opt. Express 12, 2851-2856 (2004). [CrossRef] [PubMed]
  13. A. S. Helmy, B. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguides,” Opt. Lett. 32, 2399-2401 (2007). [CrossRef] [PubMed]
  14. N. Ponnampalam and R. G. DeCorby, “Self-assembled hollow waveguides with hybrid metal-dielectric Bragg claddings,” Opt. Express 15, 12595-12604 (2007). [CrossRef] [PubMed]
  15. R. Das and K. Thyagarajan, “A high efficiency scheme for phase-matched second-harmonic generation in GaN-based Bragg reflection waveguide,” IEEE Photonics Technol. Lett. 19, 1526-1528 (2007). [CrossRef]
  16. H. Y. Sang, Z. Y. Li, and B. Y. Gu, “Propagation properties of planar Bragg waveguides studied by an analytical Blochmode method,” J. Appl. Phys. 98, 043114 (2005). [CrossRef]
  17. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef]
  18. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415-419 (2000). [CrossRef] [PubMed]
  19. J. C. Knight, “Photonic crystal fibers,” Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  20. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  21. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  22. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  23. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  24. K. S. Chiang, “Coupled-zigzag wave theory for guided waves in slab waveguide arrays,” J. Lightwave Technol. 10, 1380-1387 (1992). [CrossRef]
  25. X. Yu, P. Shum, M. Yan, and G. B. Ren, “Silica-based birefringent large-mode-area fiber with a nanostructure core,” IEEE Photonics Technol. Lett. 20, 246-248 (2008). [CrossRef]
  26. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).
  27. B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, “Modal cutoff in microstructured optical fibers,” Opt. Lett. 27, 1684-1686 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited