OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 11 — Nov. 1, 2009
  • pp: 2044–2049

Exact nonparaxial propagation of a hollow Gaussian beam

Dongmei Deng and Qi Guo  »View Author Affiliations


JOSA B, Vol. 26, Issue 11, pp. 2044-2049 (2009)
http://dx.doi.org/10.1364/JOSAB.26.002044


View Full Text Article

Enhanced HTML    Acrobat PDF (369 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A group of virtual sources that generate a hollow Gaussian wave are determined on the basis of the superposition of beams. A closed-form expression is derived for the hollow Gaussian wave that in the appropriate limit yields the paraxial hollow Gaussian beam (HGB). From the perturbative series representation of a complex-source-point spherical wave, an infinite series nonparaxial correction expression for a HGB is derived. The infinite series expression of a HGB can provide accuracy up to any order of diffraction angle. The radiation intensity of the hollow Gaussian wave is ascertained, and the radiation intensity pattern is characterized. The total time-averaged power is evaluated. The characteristics of the quality of the paraxial beam approximation to the full hollow Gaussian wave are discussed.

© 2009 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation

ToC Category:
Physical Optics

History
Original Manuscript: July 20, 2009
Manuscript Accepted: September 11, 2009
Published: October 9, 2009

Citation
Dongmei Deng and Qi Guo, "Exact nonparaxial propagation of a hollow Gaussian beam," J. Opt. Soc. Am. B 26, 2044-2049 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-11-2044


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Yin, Y. Zhu, W. Jhe, and Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58, 509-513 (1998). [CrossRef]
  2. K. Bongs, S. Burger, S. Dettmer, D. Hellweg, J. Arlt, W. Ertmer, and K. Sengstock, “Waveguide for Bose-Einstein condensates,” Phys. Rev. A 63, 031602(R) (2001). [CrossRef]
  3. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689-1695 (1999). [CrossRef] [PubMed]
  4. N. Simpson, K. Dholakia, L. Allen, and M. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52-54 (1997). [CrossRef] [PubMed]
  5. L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912-914 (2001). [CrossRef] [PubMed]
  6. X. Wang and M. G. Littman, “Laser cavity for generation of variable-radius rings of light,” Opt. Lett. 18, 767-768 (1993). [CrossRef] [PubMed]
  7. I. Manek, Y. B. Ovchinnikov, and R. Grimm, “Generation of a hollow laser beam for atom trapping using an axicon,” Opt. Commun. 147, 67-70 (1998). [CrossRef]
  8. Z. S. Sacks, D. Rozas, and G. A. Swartzlander, Jr., “Holographic formation of optical-vortex filaments,” J. Opt. Soc. Am. B 15, 2226-2234 (1998). [CrossRef]
  9. F. K. Fatemi and M. Bashkansky, “Generation of hollow beams by using a binary spatial light modulator,” Opt. Lett. 31, 864-866 (2006). [CrossRef] [PubMed]
  10. Z. J. Liu, H. F. Zhao, J. L. Liu, J. Lin, M. A. Ahmad, and S. T. Liu, “Generation of hollow Gaussian beams by spatial filtering,” Opt. Lett. 32, 2076-2078 (2007). [CrossRef] [PubMed]
  11. Y. J. Cai, X. H. Lu, and Q. Lin, “Hollow Gaussian beams and their propagation properties,” Opt. Lett. 28, 1084-1086 (2003). [CrossRef] [PubMed]
  12. Y. Cai and S. He, “Propagation of hollow Gaussian beams through apertured paraxial optical systems,” J. Opt. Soc. Am. A 23, 1410-1418 (2006). [CrossRef]
  13. Y. Cai and S. He, “Propagation of various dark hollow beams in a turbulent atmosphere,” Opt. Express 14, 1353-1367 (2006). [CrossRef] [PubMed]
  14. D. G. Deng, X. Fu, C. Wei, J. Shao, and Z. Fan, “Far-field intensity distribution and M2 factor of hollow Gaussian beams,” Appl. Opt. 44, 7187-7190 (2005). [CrossRef] [PubMed]
  15. D. M. Deng, “Generalized M2-factor of hollow Gaussian beams through a hard-edge circular aperture,” Phys. Lett. A 341, 352-356 (2005). [CrossRef]
  16. G. H. Wu, Q. H. Lou, and J. Zhou, “Analytical vectorial structure of hollow Gaussian beams in the far field,” Opt. Express 16, 6417-6424 (2008). [CrossRef] [PubMed]
  17. D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11, 2747-2752 (2003). [CrossRef] [PubMed]
  18. S. R. Seshadri, “Radiation pattern of cylindrically symmetric scalar Laguerre-Gauss beams,” Opt. Lett. 32, 1159-1161 (2007). [CrossRef] [PubMed]
  19. S. R. Seshadri, “Radiation pattern of azimuthally varying scalar Laguerre-Gauss waves,” J. Opt. Soc. Am. A 24, 3348-3353 (2007). [CrossRef]
  20. S. Sato and Y. Kozawa, “Hollow vortex beams,” J. Opt. Soc. Am. A 26, 142-146 (2009). [CrossRef]
  21. M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365-1370 (1975). [CrossRef]
  22. M. Couture and P. Belanger, “From Gaussian beam to complex-source-point spherical wave,” Phys. Rev. A 24, 355-359 (1981). [CrossRef]
  23. S. R. Seshadri, “Nonparaxial corrections for the fundamental Gaussian beam,” J. Opt. Soc. Am. A 19, 2134-2141 (2002). [CrossRef]
  24. R. Borghi and M. Santarsiero, “Summing Lax series for nonparaxial beam propagation,” Opt. Lett. 28, 774-776 (2003). [CrossRef] [PubMed]
  25. K. L. Duan and B. D. Lü, Opt. Express 11, 1474-1480 (2003). [CrossRef] [PubMed]
  26. S. R. Seshadri, “Quality of paraxial electromagnetic beams,” Appl. Opt. 45, 5335-5345 (2006). [CrossRef] [PubMed]
  27. D. M. Deng, “Nonparaxial propagation of radially polarized light beams,” J. Opt. Soc. Am. B 23, 1228-1234 (2006). [CrossRef]
  28. D. M. Deng, Q. Guo, L. J. Wu, and X. B. Yang, “Propagation of radially polarized elegant light beams,” J. Opt. Soc. Am. B 24, 636-643 (2007). [CrossRef]
  29. D. M. Deng, Q. Guo, S. Lan, and X. B. Yang, “Application of the multiscale singular perturbation method to nonparaxial beam propagations in free space,” J. Opt. Soc. Am. A 24, 3317-3325 (2007). [CrossRef]
  30. Z. Mei and D. Zhao, “Nonparaxial analysis of vectorial Laguerre-Bessel-Gaussian beams,” Opt. Express 15, 11942-11951 (2007). [CrossRef] [PubMed]
  31. D. G. Deng, H. Yu, S. Q. Xu, G. L. Tian, and Z. X. Fan, “Nonparaxial propagation of vectorial hollow Gaussian beams,” J. Opt. Soc. Am. B 25, 83-87 (2008). [CrossRef]
  32. G. A. Deschamps, “Gaussian beam as a bundle of complex rays,” Electron. Lett. 7, 684-685 (1971). [CrossRef]
  33. L. B. Felsen, “Evanescent waves,” J. Opt. Soc. Am. 66, 751-760 (1976). [CrossRef]
  34. S. Y. Shin and L. B. Felsen, “Gaussian beam modes by multipoles with complex source points,” J. Opt. Soc. Am. 67, 699-700 (1977). [CrossRef]
  35. S. R. Seshadri, “Virtual source for the Bessel-Gauss beam,” Opt. Lett. 27, 998-1000 (2002). [CrossRef]
  36. S. R. Seshadri, “Virtual source for a Laguerre-Gauss beam,” Opt. Lett. 27, 1872-1874 (2002). [CrossRef]
  37. S. R. Seshadri, “Virtual source for a Hermite-Gauss beam,” Opt. Lett. 28, 595-597 (2003). [CrossRef] [PubMed]
  38. M. A. Bandres and J. C. Gutiérrez-Vega, “Higher-order complex source for elegant Laguerre-Gaussian waves,” Opt. Lett. 29, 2213-2215 (2004). [CrossRef] [PubMed]
  39. Y. C. Zhang, Y. J. Song, Z. R. Chen, J. H. Ji, and Z. X. Shi, “Virtual sources for a cosh-Gaussian beam,” Opt. Lett. 32, 292-294 (2007). [CrossRef] [PubMed]
  40. D. M. Deng and Q. Guo, “Elegant Hermite-Laguerre-Gaussian beams,” Opt. Lett. 33, 1225-1227 (2008). [CrossRef] [PubMed]
  41. J. D. Joannopoulis, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton Univ. Press, 1995).
  42. E. J. Weniger, “Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series,” Comput. Phys. Rep. 10, 189-371 (1989). [CrossRef]
  43. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953).
  44. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995), pp. 287-290.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited