OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 11 — Nov. 1, 2009
  • pp: 2072–2076

Quantum key distribution using polarization and frequency hyperentangled photons

Chuan Wang, Li Xiao, Wan-ying Wang, Guang-yu Zhang, and Gui Lu Long  »View Author Affiliations


JOSA B, Vol. 26, Issue 11, pp. 2072-2076 (2009)
http://dx.doi.org/10.1364/JOSAB.26.002072


View Full Text Article

Enhanced HTML    Acrobat PDF (146 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a two-step quantum key distribution protocol using frequency and polarization hyperentangled photons. In this protocol, key information is encoded by unitary operations on the hyperentangled photons, and the hyperentangled photons are sent in two steps. We also designed a state measurement device and analyzed the security of the protocol.

© 2009 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5565) Quantum optics : Quantum communications
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

History
Original Manuscript: January 23, 2009
Revised Manuscript: August 1, 2009
Manuscript Accepted: September 15, 2009
Published: October 16, 2009

Citation
Chuan Wang, Li Xiao, Wan-ying Wang, Guang-yu Zhang, and Gui Lu Long, "Quantum key distribution using polarization and frequency hyperentangled photons," J. Opt. Soc. Am. B 26, 2072-2076 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-11-2072


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175-179.
  2. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121-3124 (1992). [CrossRef] [PubMed]
  3. D. Bruß, “Optimal eavesdropping in quantum cryptography with six states,” Phys. Rev. Lett. 81, 3018-3021 (1998). [CrossRef]
  4. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
  5. Y. S. Zhang, C. F. Li, and G. C. Guo, “Quantum key distribution via quantum encryption,” Phys. Rev. A 64, 024302 (2001). [CrossRef]
  6. P. Xue, C. F. Li, and G. C. Guo, “Conditional efficient multiuser quantum cryptography network,” Phys. Rev. A 65, 022317 (2002). [CrossRef]
  7. H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050-2056 (1999). [CrossRef] [PubMed]
  8. A. K. Ekert, “Quantum cryptography based on Bell's theorem,” Phys. Rev. Lett. 67, 661-663 (1991). [CrossRef] [PubMed]
  9. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell's theorem,” Phys. Rev. Lett. 68, 557-559 (1992). [CrossRef] [PubMed]
  10. F. G. Deng and G. L. Long, “Controlled order rearrangement encryption for quantum key distribution,” Phys. Rev. A 68, 042315 (2003). [CrossRef]
  11. W. Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003). [CrossRef] [PubMed]
  12. H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005). [CrossRef] [PubMed]
  13. X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005). [CrossRef]
  14. Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006). [CrossRef] [PubMed]
  15. X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005). [CrossRef] [PubMed]
  16. G. L. Long, F. G. Deng, C. Wang, X. H. Li, K. Wen, and W. Y. Wang, “Quantum secure direct communication and deterministic secure quantum communication,” Fron. Phys. China 2, 251272 (2007). [CrossRef]
  17. W. Y. Wang, C. Wang, G. Y. Zhang, and G. L. Long, “Arbitrarily long distance quantum communication using inspection and power insertion,” Chin. Sci. Bull. 54, 158-162 (2009). [CrossRef]
  18. R. Prevedel, M. Aspelmeyer, C. Brukner, A. Zeilinger, and T. D. Jennewein, “Photonic entanglement as a resource in quantum computation and quantum communication,” J. Opt. Soc. Am. B 24, 241-248 (2007).
  19. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002). [CrossRef]
  20. F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003). [CrossRef]
  21. Q. Y. Cai and B. W. Li, “Deterministic secure communication without using entanglement,” Chin. Phys. Lett. 21, 601-603 (2004). [CrossRef]
  22. F. L. Yan and X. Zhang, “A scheme for secure direct communication using EPR pairs and teleportation,” Euro. Phys. J. B 41, 75-78 (2004). [CrossRef]
  23. Z. J. Zhang, Z. X. Man, and Y. Li, “Improving Wójcik's eavesdropping attack on the ping-pong protocol,” Phys. Lett. A 333, 46-50 (2004). [CrossRef]
  24. Z. X. Man, Z. J. Zhang, and Y. Li, “Quantum dialogue revisited,” Chin. Phys. Lett. 22, 22-24 (2005). [CrossRef]
  25. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005). [CrossRef]
  26. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992). [CrossRef] [PubMed]
  27. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656-4659 (1996). [CrossRef] [PubMed]
  28. S. L. Braunstein and H. J. Kimble, “Dense coding for continuous variables,” Phys. Rev. A 61, 042302 (2000). [CrossRef]
  29. J. Zhang and K. C. Peng, “Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state,” Phys. Rev. A 62, 064302 (2000). [CrossRef]
  30. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995). [CrossRef] [PubMed]
  31. M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear AlGaAs waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98, 063103 (2005). [CrossRef]
  32. S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003). [CrossRef]
  33. M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007). [CrossRef]
  34. L. Aolita and S. P. Walborn, “Quantum communication without alignment using multiple-qubit single-photon states,” Phys. Rev. Lett. 98, 100501 (2007). [CrossRef] [PubMed]
  35. L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008). [CrossRef]
  36. H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fiber,” New J. Phys. 7, 232 (2005). [CrossRef]
  37. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006). [CrossRef]
  38. Y. H. Kim, S. P. Kulik, and Y. H. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86, 1370-1373 (2001). [CrossRef] [PubMed]
  39. G. L. Long, “The general quantum interference principle and the duality computer,” Commun. Theor. Phys. 45, 825-844 (2006). [CrossRef]
  40. Y. Liu, W. H. Zhang, C. L. Zhang, and G. L. Long, “Quantum computation with nonlinear optics,” Commun. Theor. Phys. 49, 107-110 (2008). [CrossRef]
  41. H. P. Yuen, “Quantum bit commitment and unconditional security,” arXiv:quant-ph/0207089v3 (2002).
  42. H. P. Yuen, “How unconditionally secure quantum bit commitment is possible,” arXiv:quant-ph/0109055v2 (2001).
  43. C. A. Fuchs, N. Gisin, R. B. Griffiths, C. S. Niu, and A. Peres, “Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56, 1163-1172 (1997). [CrossRef]
  44. I. P. Degiovanni, I. Ruo Berchera, S. Castelletto, and M. L. Rastello, “Quantum dense key distribution,” Phys. Rev. A 69, 032310 (2004). [CrossRef]
  45. I. P. Degiovanni, I. Ruo Berchera, S. Castelletto, and M. L. Rastello, “Reply to “Comment on 'Quantum dense key distribution'”,” Phys. Rev. A 71, 016302 (2005). [CrossRef]
  46. F. G. Deng and G. L. Long, “Bidirectional quantum key distribution protocol with practical faint laser pulses,” Phys. Rev. A 70, 012311 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited