OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 11 — Nov. 1, 2009
  • pp: 2161–2166

Maximization of nonlinear fluorescence from ultrasmall ( 2 nm ) semiconductor quantum dots to be used for deep tissue imaging

L. Wang and R. K. Jain  »View Author Affiliations

JOSA B, Vol. 26, Issue 11, pp. 2161-2166 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (354 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose the use of ultrasmall semiconductor quantum dots (USQDs) for specialized bio-imaging applications, and discuss methods for enhancing fluorescent signals from USQDs to be used for two-photon-absorption based deep tissue imaging. In particular, we report optimizing the excitation wavelength for two-photon absorption-induced fluorescence (TPAF) in Cd Se Zn S SQDs and demonstrate a 68-fold enhancement in the fluorescence signal when the TPAF excitation wavelength is changed from 900 nm to 780 nm .

© 2009 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Nonlinear Optics

Original Manuscript: March 11, 2009
Revised Manuscript: June 16, 2009
Manuscript Accepted: June 20, 2009
Published: October 27, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

L. Wang and R. K. Jain, "Maximization of nonlinear fluorescence from ultrasmall (≤2 nm) semiconductor quantum dots to be used for deep tissue imaging," J. Opt. Soc. Am. B 26, 2161-2166 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990). [CrossRef] [PubMed]
  2. B. R. Masters, P. T. C. So, and E. Gratton, “Optical biopsy of in vivo human skin: Multiphoton excitation microscopy,” Lasers Med. Sci. 13, 196-203 (1998). [CrossRef]
  3. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Multiphoton microscopy in biological research,” Curr. Opin. Chem. Biol. 5, 603-608 (2001). [CrossRef] [PubMed]
  4. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434-1436 (2003). [CrossRef] [PubMed]
  5. J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17, 763-767 (1999). [CrossRef] [PubMed]
  6. E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med. 7, 864-868 (2001). [CrossRef] [PubMed]
  7. K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385, 161-165 (1997). [CrossRef] [PubMed]
  8. B. E. Chen, B. Lendvai, E. A. Nimchinsky, B. Burbach, K. Fox, and K. Svoboda, “Imaging high-resolution structure of GFP-expressing neurons in neocortex in vivo,” Learn. Memory 7, 433-441 (2000). [CrossRef]
  9. K. W. Dunn, R. M. Sandoval, K. J. Kelly, P. C. Dagher, G. A. Tanner, S. J. Atkinson, R. L. Bacallao, and B. A. Molitoris, “Functional studies of the kidney of living animals using multicolor two-photon microscopy,” Am. J. Physiol.: Cell Physiol. 283, C905-C916 (2002).
  10. V. E. Centonze and J. G. White, “Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging,” Biophys. J. 75, 2015-2024 (1998). [CrossRef] [PubMed]
  11. X. Deng and M. Gu, “Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte Carlo simulation,” Appl. Opt. 42, 3321-3329 (2003). [CrossRef] [PubMed]
  12. L. Sacconi, R. P. O'Connor, A. Jasaitis, A. Masi, M. Buffelli, and F. S. Pavone, “In vivo multiphoton nanosurgery on cortical neurons,” J. Biomed. Opt. 12, 050502 (2007). [CrossRef] [PubMed]
  13. M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013-2016 (1998). [CrossRef] [PubMed]
  14. W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016-2018 (1998). [CrossRef] [PubMed]
  15. M. J. O'Donovan, S. Ho, G. Sholomenko, and W. Yee, “Real-time imaging of neurons retrogradely and anterogradely labelled with calcium-sensitive dyes,” J. Neurosci. Methods 46, 91-106 (1993). [CrossRef] [PubMed]
  16. M. Danek, K. F. Jensen, C. B. Murray, and M. G. Bawendi, “Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe,” Chem. Mater. 8, 173-180 (1996). [CrossRef]
  17. C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites,” J. Am. Chem. Soc. 115, 8706-8715 (1993). [CrossRef]
  18. P. T. Tran, E. R. Goldman, G. P. Anderson, J. M. Mauro, and H. Matroussi, Use of Luminescent CdSe-ZnS Nanocrystal Bioconjugates in Quantum Dot-based Nanosensors (Wiley-VCH, 2002), pp. 427-432.
  19. D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105, 8861-8871 (2001). [CrossRef]
  20. W. J. Parak, D. Gerion, D. Zanchet, A. S. Woerz, T. Pellegrino, C. Micheel, S. C. Williams, M. Seitz, R. E. Bruehl, Z. Bryant, C. Bustamante, C. R. Bertozzi, and A. P. Alivisatos, “Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots,” Chem. Mater. 14, 2113-2119 (2002). [CrossRef]
  21. S. Wang, N. Mamedova, N. A. Kotov, W. Chen, andJ. Studer, “Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates,” Nano Lett. 2, 817-822 (2002). [CrossRef]
  22. W. Guo, J. J. Li, Y. A. Wang, and X. Peng, “Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared via dendrimer bridging,” Chem. Mater. 15, 3125-3133 (2003). [CrossRef]
  23. L. Wang, Z. Zhang, R. K. Jain, F. Vanholsbeeck,S. Murdoch, and J. Harvey, “Measurement of two-photon absorption coefficients in colloidal semiconductor quantum dots,” in Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting, Vol. 2, (IEEE, 2004), pp. 487-488.
  24. S.-C. Pu, M.-J. Yang, C.-C. Hsu, C.-W. Lai, C.-C. Hsieh, S. H. Lin, Y.-M. Cheng, and P.-T. Chou, “The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots,” Small 2, 1308-1313 (2006). [CrossRef] [PubMed]
  25. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91, 1908-1912 (2004). [CrossRef]
  26. F. Chen and D. Gerion, “Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells,” Nano Lett. 4, 1827-1832 (2004). [CrossRef]
  27. J. G. D. Foley and J. B. L. Bard, “Apoptosis in the cortex of the developing mouse kidney,” J. Anat. 201, 477-484 (2002). [CrossRef] [PubMed]
  28. W. Jiang, A. Singhal, J. Zheng, C. Wang, and W. C. W. Chan, “Optimizing the synthesis of red- to near-IR-emitting CdS-capped CdTexSe1−x alloyed quantum dots for biomedical imaging,” Chem. Mater. 18, 4845-4854 (2006). [CrossRef]
  29. I. Nabiev, S. Mitchell, A. Davies, Y. Williams, D. Kelleher, R. Moore, Y. K. Gun'ko, S. Byrne, Y. P. Rakovich, J. F. Donegan, A. Sukhanova, J. Conroy, D. Cottell, N. Gaponik, A. Rogach, and Y. Volkov, “Nonfunctionalized nanocrystals can exploit a cell's active transport machinery delivering them to specific nuclear and cytoplasmic compartments,” Nano Lett. 7, 3452-3461 (2007). [CrossRef] [PubMed]
  30. Y. Xu, Q. Wang, P. He, Q. Dong, F. Liu, Y. Liu, L. Lin, H. Yan, and X. Zhao, “Cell nucleus penetration by quantum dots induced by nuclear staining organic fluorophore and UV-irradiation,” Adv. Mater. 20, 3468-3473 (2008). [CrossRef]
  31. K.-T. Yong, I. Roy, H. E. Pudavar, E. J. Bergey, K. M. Tramposch, M. T. Swihart, and P. N. Prasad, “Multiplex imaging of pancreatic cancer cells by using functionalized quantum rods,” Adv. Mater. 20, 1412-1417 (2008). [CrossRef]
  32. L. Wang, D. Ancukiewicz, J. Y. Chen, and R. K. Jain, “Surface-plasmon enhanced fluorescence in CdSe/ZnS semiconductor quantum dots,” Paper # CTu07, presented at the Conference on Lasers and Electro-Optics Conference (CLEO/IQEC 2009), Baltimore, Maryland, 31 May, 2009.
  33. All the SQD samples described here were purchased from Evident Technologies; the “2 nm” USQD samples used in this study are their “Blue” product with a specified CdSe core diameter of 1.9 nm(+/−5%) and a peak emission wavelength of 490 nm, consistent with our measurements reported here.
  34. Z. Tang, N. A. Kotov, and M. Giersig, “Spontaneous organization of single CdTe nanoparticles into luminescent nanowires,” Science 297, 237-240 (2002). [CrossRef] [PubMed]
  35. K. I. Kang, B. P. McGinnis, Sandalphon, Y. Z. Hu, S. W. Koch, N. Peyghambarian, L. C. Liu, and S. H. Risbud, “Confinement-induced valence-band mixing in CdS quantum dots observed by two-photon spectroscopy,” Phys. Rev. B 45, 3465-3468 (1992). [CrossRef]
  36. M. E. Schmidt, S. A. Blanton, M. A. Hines, and P. Guyot-Sionnest, “Size-dependent two-photon excitation spectroscopy of CdSe nanocrystals,” Phys. Rev. B 53, 12629-12632 (1996). [CrossRef]
  37. A. L. Efros and M. Rosen, “Electronic structure of semiconductor nanocrystals,” Annu. Rev. Mater. Sci. 30, 475-521 (2000). [CrossRef]
  38. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7, 941-945 (2007). [CrossRef] [PubMed]
  39. B. I. Tarnowski, F. G. Spinale, and J. H. Nicholson, “DAPI as a useful stain for nuclear quantitation,” Biotech. Histochem. 66, 296-302 (1991). [CrossRef]
  40. H. M. Elsheikha and L. S. Mansfield, “Assessment of Sarcocystis neurona sporocyst viability and differentiation between viable and nonviable sporocysts using propidium iodide stain,” J. Parasitol. 90, 872-875 (2004). [CrossRef] [PubMed]
  41. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690to1050 nm,” J. Opt. Soc. Am. B 13, 481-491 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited