OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 11 — Nov. 1, 2009
  • pp: 2171–2175

Determination of photo-induced changes in linear optical coefficients by the Z-scan technique

K. Fedus and G. Boudebs  »View Author Affiliations

JOSA B, Vol. 26, Issue 11, pp. 2171-2175 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (424 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a Z-scan technique as a tool to characterize small phase shift ( < 1 rad ) and photodarkening, both effects induced inside photosensitive materials by light illumination. Theoretical analysis supported by experiments is presented for permanent refraction and absorption Gaussian profiles. Simple relations are derived in order to estimate the changes in the linear coefficients. Particularly, we investigate quantitatively the photo-induced modifications in the linear optical constants of As 2 S 3 caused by subbandgap irradiation ( 17 ps , 1064 nm ).

© 2009 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(160.5335) Materials : Photosensitive materials

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 24, 2009
Manuscript Accepted: September 30, 2009
Published: October 27, 2009

K. Fedus and G. Boudebs, "Determination of photo-induced changes in linear optical coefficients by the Z-scan technique," J. Opt. Soc. Am. B 26, 2171-2175 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and their Applications (Springer, 2007).
  2. K. Tanaka, “Photo-induced phenomena in chalcogenide glass: comparison with those in oxide glass and polymer,” J. Non-Cryst. Solids 352, 2580-2584 (2006). [CrossRef]
  3. A. V. Belykh, O. M. Efimov, L. B. Glebov, Yu. A. Matveev, A. M. Mekryukov, M. D. Mikhailov, and K. Richardson, “Photo-structural transformation of chalcogenide glasses under non-linear absorption of laser radiation,” J. Non-Cryst. Solids 213-214, 330-335 (1997). [CrossRef]
  4. K. Tanaka, N. Toyosawa, and H. Hisakuni, “Photoinduced Bragg gratings in As2S3 optical fibers,” Opt. Lett. 20, 1976-1978 (1995). [CrossRef] [PubMed]
  5. C. Meneghini and A. Villeneuve, “As2S3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides,” J. Opt. Soc. Am. B 15, 2946-2950 (1998). [CrossRef]
  6. J.-F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, E. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Photopolym. Sci. Technol. 17, 1184-1191 (1999).
  7. T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072-4075 (1998). [CrossRef]
  8. A. M. Ljungstrom and T. M. Monro, “Light-induced self-writing effects in bulk chalcogenide glass,” J. Lightwave Technol. 20, 78-85 (2002). [CrossRef]
  9. N. Hô, J. M. Laniel, R. Vallée, and A. Villeneuve, “Photosensitivity of As2S3 chalcogenide thin films at 1.5 μm,” Opt. Lett. 28, 965-967 (2003). [CrossRef] [PubMed]
  10. D. A. Turnbull, J. S. Sanghera, V. Q. Nguyen, and I. D. Aggarwal, “Fabrication of waveguides in sputtered films of GeAsSe glass via photodarkening with above bandgap light,” Mater. Lett. 58, 51-54 (2003). [CrossRef]
  11. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748-750 (2004). [CrossRef] [PubMed]
  12. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729-1731 (1996). [CrossRef] [PubMed]
  13. O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379-386 (2001). [CrossRef]
  14. A. C. van Popta, R. G. DeCorby, C. J. Haugen, T. Robinson, and J. N. McMullin, D. Tonchev, and S. O. Kasap, “Photoinduced refractive index change in As2Se3 by 633 nm illumination,” Opt. Express 15, 639-644 (2002).
  15. A. M. Ljungstrom, T. M. Monro, “Observation of light-induced refractive index reduction in bulk glass and application to the formation of complex waveguides,” Opt. Express 10, 230-235 (2002). [PubMed]
  16. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990). [CrossRef]
  17. B. M. Patterson, W. R. White, T. A. Robbins, and R. J. Knize, “Linear optical effects in Z-scan measurements of thin films,” Appl. Opt. 37, 1854-1857 (1998). [CrossRef]
  18. K. Fedus, G. Boudebs, Cid B. de Araujo, M. Cathelinaud, F. Charpentier, and V. Nazabal, “Photo-induced effects in thin films of Te20As30Se50 glass with nonlinear characterization,” Appl. Phys. Lett. 94, 061122 (2009). [CrossRef]
  19. G. Boudebs and K. Fedus, “Linear optical characterization of transparent thin films by Z-scan technique,” Opt. Lett. 48, 4124-4129 (2009). [CrossRef]
  20. R. E. Samad and N. D. Vieira, Jr., “Analytical description of z-scan on-axis intensity based on the Huygens-Fresnel principle,” J. Opt. Soc. Am. B 15, 2742-2747 (1998). [CrossRef]
  21. D. Wearie, B. S. Wherett, D. A. B. Miller, and S. D. Smith, “Effect of low-power nonlinear refraction on laser-beam propagation in InSb,” Opt. Lett. 9, 331-333 (1984).
  22. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550-1567 (1966). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited