OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 11 — Nov. 1, 2009
  • pp: 2181–2184

Bandgap investigations and the effect of the In and Al concentration on the optical properties of In x Al 1 x N

Muhammad Maqbool, Bin Amin, and Iftikhar Ahmad  »View Author Affiliations

JOSA B, Vol. 26, Issue 11, pp. 2181-2184 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (278 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical properties of In x Al 1 x N are calculated as a function of the concentration of indium and aluminum. Aluminum is partially replaced by indium in an AlN sample, and optical properties of the resulting materials are studied. The fractional concentration of indium is increased gradually from x = 0 to x = 1 in steps of 0.25. The bandgap decreases with increasing indium concentration, ending up with a narrow gap of 0.9 eV for pure InN and a wide gap of 5.4 eV for pure AlN. Frequency-dependent reflectivity, absorption coefficient, and optical conductivity of In x Al 1 x N are calculated and found to be the constituent’s concentration dependent. The maximum value of reflectivity, absorption coefficient, and optical conductivity shifts from higher frequency into the lower frequency region as the material goes from pure AlN to pure InN.

© 2009 Optical Society of America

OCIS Codes
(230.1150) Optical devices : All-optical devices
(310.3840) Thin films : Materials and process characterization
(350.4600) Other areas of optics : Optical engineering
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optics at Surfaces

Original Manuscript: June 5, 2009
Revised Manuscript: August 13, 2009
Manuscript Accepted: September 23, 2009
Published: October 27, 2009

Muhammad Maqbool, Bin Amin, and Iftikhar Ahmad, "Bandgap investigations and the effect of the In and Al concentration on the optical properties of InxAl1−xN," J. Opt. Soc. Am. B 26, 2181-2184 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Maqbool, M. E. Kordesch, and A. Kayani, “Enhanced cathodoluminescence from an amorphous AlN:holmium phosphor by co-doped Gd+3 for optical devices applications,” J. Opt. Soc. Am. B 26, 998-1001 (2009). [CrossRef]
  2. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal bandgap bowing in group-III nitride alloys,” Solid State Commun. 127, 411-414 (2003). [CrossRef]
  3. M. Maqbool, M. E. Kordesch, and I. Ahmad, “Electron penetration depth in amorphous AlN by exploiting the luminescence of Ho and Tm ions added to AlN,” Curr. Appl. Phys. 9, 417-421 (2009). [CrossRef]
  4. M. Maqbool, I. Ahmad, H. H. Richardson, and M. E. Kordesch, “Direct ultraviolet excitation of an amorphous AlN: praesiodimium phosphor by co-doped Gd3+ cathodoluminescence,” Appl. Phys. Lett. 91, 193511 (2007). [CrossRef]
  5. M. Maqbool and Iftikhar Ahmad, “Spectroscopy of gadolinium ion and disadvantages of gadolinium impurity in tissue compensators and collimators, used in radiation treatment planning,” Spectroscopy (Amsterdam) 21, 205-210 (2007).
  6. J. M. Khoshman and M. E. Kordesch, “Spectroscopic ellipsometry characterization of amorphous aluminum nitride and indium nitride thin films,” Phys. Status Solidi C 2, 2821-2827 (2005). [CrossRef]
  7. E. Iliopoulos, A. Adikimenakis, C. Giesen, M. Heuken, and A. Georgakilas, “Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry,” Appl. Phys. Lett. 92, 191907 (2008). [CrossRef]
  8. J. Wu, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80, 3967-3969 (2002). [CrossRef]
  9. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81, 1246-1248 (2002). [CrossRef]
  10. T. L. Tansley and C. P. Foley, “Optical band gap of indium nitride,” J. Appl. Phys. 59, 3241-3244 (1986). [CrossRef]
  11. K. Butcher, H. Hirshy, R. Perks, M. Fouquet, and P. Chen, “Stoichiometry effects and the Moss-Burstein effect for InN,” Phys. Status Solidi A 203, 66-74 (2006). [CrossRef]
  12. O. K. Andersen, “Linear methods in band theory,” Phys. Rev. B 12, 3060-3083 (1975). [CrossRef]
  13. S. Hernández, K. Wang, D. Amabile, E. Nogales, D. Pastor, R. Cuscó, L. Artús, R. W. Martin, K. P. O'Donnell, and I. M. Watson, “Structural and optical properties of MOCVD InAlN epilayers,” Mater. Res. Soc. Symp. Proc. 892, 557-562 (2006).
  14. Z. Dridi, B. Bouhafs, and P. Ruterana, “Strong dependence of the fundamental bandgap on the alloy composition in cubic InxGa1−xN and InxAl1−xN Alloys,” Mater. Res. Soc. Symp. Proc. 798, paper Y5.69, 1-5 (2004).
  15. A. Ayuela, J. Enkovaara, K. Ullakko, and R. M. Nieminen, “Structural properties of magnetic Heusler alloys,” J. Phys.: Condens. Matter 11, 2017-2026 (1999). [CrossRef]
  16. K. Schwarz and P. Blaha, “Solid state calculations using WIEN2k,” Comput. Mater. Sci. 28, 259-273 (2003). [CrossRef]
  17. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvanicka, and J. Luitz, WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna Univ. of Technology, 2001).
  18. G. Rahman, S. Cho, and S. C. Hong, “Half metallic ferromagnetism of Mn doped AlSb: A first principles study,” Phys. Status Solidi B 244, 4435-4438 (2007). [CrossRef]
  19. S. Mecabih, K. Benguerine, N. Benosman, B. Abbar, and B. Bouhafs, “Generalized gradient calculations of magneto-electronic properties for diluted magnetic semiconductors ZnMnS and ZnMnSe,” Physica B 403, 3452-3458 (2008). [CrossRef]
  20. L. C. Duda, C. B. Stagarescu, J. Downes, K. E. Smith, D. Korakakis, T. D. Moustakus, J. Guo, and J. Nordgren, “Density of states, hybridization, and bandgap evolution in AlxGa1−xN alloys,” Phys. Rev. B 58, 1928-1933 (1998). [CrossRef]
  21. T. H. Gfroerer, L. P. Priestley, F. E. Weindruch, and M. W. Wanless, “Defect-related density of states in low-band gap InxGa1−xAs/InAsyP1−y double heterostructures grown on InP substrates,” Appl. Phys. Lett. 80, 4570-4572 (2002). [CrossRef]
  22. M. L. Benkhedir, M. S. Aida, A. Stesmans, and G. J. Adriaenssens, “Experimental studies of the density of states in the band gap of a-Se,” J. Optoelectron. Adv. Mater. 7, 329-332 (2005).
  23. A. Koizumi, H. Moriya, N. Watanabe, Y. Nonogaki, Y. Fujiwara, and Y. Takeda, “Er-related luminescence in Er, O-codoped InGaAs/GaAs multiple-quantum-well structures grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1559-1561 (2002). [CrossRef]
  24. H. Hirayama, A. Kinoshita, A. Hirata, and Y. Aoyagi, “Room-temperature intense 320 nm ultraviolet emission from quaternary InAlGaN-based multiple-quantum wells,” Appl. Phys. Lett. 80, 1589-1591 (2002). [CrossRef]
  25. A. Bhattacharyya, S. Lyer, E. Iliopoulos, A. V. Sampath, J. Cabalu, and I. Friel, “High reflectivity and crack-free AlGaN/AlN ultraviolet distributed Bragg reflectors,” J. Vac. Sci. Technol. B 20, 1229-1233 (2002). [CrossRef]
  26. T. Someya and Y. Arakawa, “Highly reflective GaN/Al0.34Ga0.66N quarter-wave reflectors grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 73, 3653-3655 (1998). [CrossRef]
  27. M. K. Emsley and M. S. Unlu, “Silicon substrates with buried distributed Bragg reflectors for resonant cavity-enhanced optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 8, 948-955 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited