OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: 2218–2227

Model for ultrafast harmonic generation from a gold surface: extraction of dephasing times for continuum–continuum transitions

N. E. Karatzas and A. T. Georges  »View Author Affiliations

JOSA B, Vol. 26, Issue 12, pp. 2218-2227 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (286 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A model is presented for describing ultrafast interferometric second- and third-harmonic generation (SHG and THG) from a gold surface. The model uses an effective four-level density matrix system that accounts for the stepwise resonant excitation channels with finite dephasing and energy relaxation times, and the fast nonresonant channel through the energy continua. By fitting recent experimental results for SHG and THG from a polycrystalline gold surface irradiated with 18 fs Ti:sapphire laser pulses, we have extracted a T 2 = 7.9 fs dephasing time at 1.56 eV above the Fermi energy, compared with a T 1 30 fs energy relaxation time at the same energy level. The difference indicates a strong contribution to the dephasing of the polarization from elastic processes. Using these values, we present calculations for other laser pulse durations, from 30 fs down to one optical cycle ( 2.65 fs ) . It is shown that, in particular, interferometric THG from a gold surface can be used to measure and characterize with high accuracy laser pulses as short as one optical cycle.

© 2009 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Optics at Surfaces

Original Manuscript: August 31, 2009
Revised Manuscript: September 28, 2009
Manuscript Accepted: September 30, 2009
Published: November 2, 2009

N. E. Karatzas and A. T. Georges, "Model for ultrafast harmonic generation from a gold surface: extraction of dephasing times for continuum-continuum transitions," J. Opt. Soc. Am. B 26, 2218-2227 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Simon, F. Trager, A. Assion, B. Lang, S. Voll, and G. Gerber, “Femtosecond time-resolved second-harmonic generation at the surface of alkali metal clusters,” Chem. Phys. Lett. 296, 579-584 (1998). [CrossRef]
  2. B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Resonant and offresonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation,” Phys. Rev. Lett. 83, 4421-4424 (1999). [CrossRef]
  3. Y.-H. Liau, A. N. Unterreiner, Q. Chang, and N. F. Scherer, “Ultrafast dephasing of single nanoparticles studied by two-pulse second-order interferometry,” J. Phys. Chem. B 105, 2135-2142 (2001). [CrossRef]
  4. C. Voelkmann, M. Reichelt, T. Meier, S. W. Koch, and U. Hofer, “Five-wave mixing spectroscopy of ultrafast electron dynamics at a Si(001) surface,” Phys. Rev. Lett. 92, 127405 (2004). [CrossRef] [PubMed]
  5. M. W. Klein, T. Tritschler, and M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B 72, 115113 (2005). [CrossRef]
  6. J. Dai, H. Teng, and C. Guo, “Second- and third-order interferometric autocorrelations based on harmonic generations from metal surfaces,” Opt. Commun. 252, 173-178 (2005). [CrossRef]
  7. M. Mauerer, I. L. Shumay, W. Berthold, and U. Hofer, “Ultrafast carrier dynamics in Si(111)7×7 dangling bonds probed by time-resolved second-harmonic generation and two-photon photoemission,” Phys. Rev. B 73, 245305 (2006). [CrossRef]
  8. J. A. McGuire, M. B. Raschke, and Y. R. Shen, “Electron dynamics of silicon surface states: second-harmonic hole-burning on Si(111)-(7×7),” Phys. Rev. Lett. 96, 087401 (2006). [CrossRef] [PubMed]
  9. U. Bovensiepen, “Coherent and incoherent excitation of the Gd(001) surface on ultrafast timescales,” J. Phys. Condens. Matter 19, 083201 (2007). [CrossRef]
  10. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2, 136-159 (2008). [CrossRef]
  11. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55-58 (2009). [CrossRef]
  12. S. Ogawa, H. Nagano, H. Petek, and A. P. Heberle, “Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission,” Phys. Rev. Lett. 78, 1339-1342 (1997). [CrossRef]
  13. F. Hubenthal, “Ultrafast dephasing time of localized surface plasmon polariton resonance and the involved damping mechanisms in colloidal gold nanoparticles,” Prog. Surf. Sci. 82, 378-387 (2007). [CrossRef]
  14. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  15. J. B. Smith and H. Ehrenreich, “Frequency dependence of the optical relaxation time in metals,” Phys. Rev. B 25, 923-930 (1982). [CrossRef]
  16. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002). [CrossRef] [PubMed]
  17. A. T. Georges and N. E. Karatzas, “Modeling of ultrafast interferometric three-photon photoemission from a metal surface irradiated with sub-10-fs laser pulses,” Phys. Rev. B 77, 085436 (2008). [CrossRef]
  18. M. J. Weida, S. Ogawa, H. Nagano, and H. Petek, “Ultrafast interferometric pump-probe correlation measurements in systems with broadened bands or continua,” J. Opt. Soc. Am. B 17, 1443-1451 (2000). [CrossRef]
  19. N. A. Papadogiannis, S. D. Moustaizis, P. A. Loukakos, and C. Kalpouzos, “Temporal characterization of ultra short laser pulses based on multiple harmonic generation on a gold surface,” Appl. Phys. B 65, 339-345 (1997). [CrossRef]
  20. W. Hubner, K. H. Bennemann, and K. Bohmer, “Theory for the nonlinear optical response of transition metals: polarization dependence as a fingerprint of the electronic structure at surfaces and interfaces,” Phys. Rev. B 50, 17597-17605 (1994). [CrossRef]
  21. A. T. Georges and N. E. Karatzas, “Theory of multiple harmonic generation in reflection from a metal surface,” Appl. Phys. B 81, 479-485 (2005). [CrossRef]
  22. For typos incurred during the production stage (iNωm printed as iNω or as ImNω), see Appl. Phys. B 81, 725-726 (2005). [CrossRef]
  23. See, for example, G. Baym, Lectures on Quantum Mechanics (Benjamin, 1973).
  24. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  25. I. Campillo, J. M. Pitarke, A. Rubio, and P. M. Echenique, “Role of occupied d states in the relaxation of hot electrons in Au,” Phys. Rev. B 62, 1500-1503 (2000). [CrossRef]
  26. N. E. Karatzas and A. T. Georges, “Effects of electron relaxation on multiple harmonic generation from metal surfaces with femtosecond laser pulse,” Opt. Commun. 267, 498-504 (2006). [CrossRef]
  27. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, 1976).
  28. K. L. Moore and T. D. Donnelly, “Probing nonequilibrium electron distribution in gold by use of second-harmonic generation,” Opt. Lett. 24, 990-992 (1999). [CrossRef]
  29. S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett. 5, 515-518 (2005). [CrossRef] [PubMed]
  30. D. Meshulach, Y. Barad, and Y. Silberberg, “Measurement of ultrashort optical pulses by third-harmonic generation,” J. Opt. Soc. Am. B 14, 2122-2125 (1997). [CrossRef]
  31. M. E. Anderson, T. Witting, and I. A. Walmsley, “Gold-SPIDER: spectral phase interferometry for direct electric field reconstruction utilizing sum-frequency generation from a gold surface,” J. Opt. Soc. Am. B 25, A13-A16 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited