OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: 2285–2289

Application of modified Padé approximant operators to time-domain beam propagation methods

Khai Q. Le, Trevor Benson, and Peter Bienstman  »View Author Affiliations

JOSA B, Vol. 26, Issue 12, pp. 2285-2289 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (389 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the usefulness of the recently introduced modified Padé approximant operators for the solution of time-domain beam propagation problems. We show this both for a wideband method, which can take reflections into account, and for a split-step method for the modeling of ultrashort unidirectional pulses. The resulting approaches achieve high-order accuracy not only in space but also in time.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(220.2560) Optical design and fabrication : Propagating methods
(350.5500) Other areas of optics : Propagation

ToC Category:
Numerical Approximation and Analysis

Original Manuscript: September 4, 2009
Revised Manuscript: October 6, 2009
Manuscript Accepted: October 8, 2009
Published: November 9, 2009

Khai Q. Le, Trevor Benson, and Peter Bienstman, "Application of modified Padé approximant operators to time-domain beam propagation methods," J. Opt. Soc. Am. B 26, 2285-2289 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Yamauchi, Propagating Beam Analysis of Optical Waveguides (Research Studies Press, 2003).
  2. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150-161 (2000). [CrossRef]
  3. K. Q. Le, R. G. Rubio, P. Bienstman, and G. R. Hadley, “The complex Jacobi iterative method for three-dimensional wide-angle beam propagation,” Opt. Express 16, 17021-17030 (2008). [CrossRef] [PubMed]
  4. M. D. Feit and J. A. Fleck Jr., “Analysis of rib waveguides and couplers by the propagating beam method,” J. Opt. Soc. Am. A 7, 73-79 (1990). [CrossRef]
  5. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations,” IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).
  6. S. T. Chu and S. Chaudhuri, “A finite-difference time-domain method for the design and analysis of guided wave optical structures,” J. Lightwave Technol. 7, 2033-2038 (1989). [CrossRef]
  7. J. Yamauchi, M. Mita, S. Aoki, and H. Nakano, “Analysis of antireflection coatings using the FD-TD method with the PML absorbing boundary condition,” IEEE Photon. Technol. Lett. 8, 239-241 (1996). [CrossRef]
  8. R. Y. Chan and J. M. Liu, “Time-domain wave propagation in optical structures,” IEEE Photon. Technol. Lett. 6, 1001-1003 (1994). [CrossRef]
  9. T. Fujisawa and M. Koshiba, “Time-domain beam propagation method for nonlinear optical propagation analysis and its application to photonic crystal circuits,” J. Lightwave Technol. 22, 684-691 (2004). [CrossRef]
  10. M. Koshiba, J. Tsuji, and M. Kikari, “Time-domain beam propagation method and its application to photonic crystal circuits,” J. Lightwave Technol. 18, 102-110 (2000). [CrossRef]
  11. J. Shibayama, A. Yamahira, T. Mugita, J. Yamauchi, and H. Nakano, “A finite-difference time-domain beam-propagation method for TE- and TM-wave analyses,” J. Lightwave Technol. 21, 1709-1715 (2003). [CrossRef]
  12. P. L. Liu, Q. Zhao, and F. S. Choa, “Slow-wave finite-difference beam propagation method,” IEEE Photon. Technol. Lett. 7, 890-892 (1995). [CrossRef]
  13. K. Q. Le, “Complex Padé approximant operators for wide-angle beam propagation,” Opt. Commun. 282, 1252-1254 (2009). [CrossRef]
  14. N. N. Feng, G. R. Zhou, and W. P. Huang, “An efficient split-step time-domain beam propagation method for modeling of optical waveguide devices,” J. Lightwave Technol. 23, 2186-2191 (2005). [CrossRef]
  15. H. M. Masoudi, “A novel nonparaxial time-domain beam propagation method for modeling ultrashort pulses in optical structures,” J. Lightwave Technol. 25, 1-10 (2007). [CrossRef]
  16. J. J. Lim, T. M. Benson, E. C. Larkins, and P. Sewell, “Wideband finite-difference-time-domain beam propagation method,” Microwave Opt. Technol. Lett. 34, 243-246 (2002). [CrossRef]
  17. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering, Numerical Recipes: The Art of Scientific Computing (Cambridge Univ. Press, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited