OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: 2308–2314

Active feedback of a Fabry–Perot cavity to the emission of a single In As Ga As quantum dot

Michael Metcalfe, Andreas Muller, Glenn S. Solomon, and John Lawall  »View Author Affiliations

JOSA B, Vol. 26, Issue 12, pp. 2308-2314 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (160 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a detailed study of the use of Fabry–Perot (FP) cavities for the spectroscopy of single InAs quantum dots (QDs). We derive optimal cavity characteristics and resolution limits and measure photoluminescence linewidths as low as 0.9 GHz . By embedding the QDs in a planar cavity, we obtain a sufficiently large signal to actively feed back on the length of the FP to lock to the emission of a single QD with a stability below 2% of the QD linewidth. An integration time of approximately two seconds is found to yield an optimum compromise between shot noise and cavity length fluctuations.

© 2009 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Optical Devices

Original Manuscript: September 8, 2009
Manuscript Accepted: October 5, 2009
Published: November 16, 2009

Michael Metcalfe, Andreas Muller, Glenn S. Solomon, and John Lawall, "Active feedback of a Fabry-Perot cavity to the emission of a single InAs/GaAs quantum dot," J. Opt. Soc. Am. B 26, 2308-2314 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Michler, Single Quantum Dots, Fundamentals, Applications and New Concepts (Springer-Verlag, 2003).
  2. P. M. Petroff, A. Lorke, and A. Imamoğlu, “Epitaxially self-assembled quantum dots,” Phys. Today 54, 46-52 (2001). [CrossRef]
  3. S. Seidl, A. Högele, M. Kroner, K. Karrai, A. Badolato, P. Petroff, and R. Warburton, “Tuning the cross-gap transition energy of a quantum dot by uniaxial stress,” Physica E 32, 14-16 (2006). [CrossRef]
  4. H. Gotoh, H. Kamada, H. Ando, and J. Temmyo, “Lateral electric-field effects on excitonic photoemissions in InGaAs quantum disks,” Appl. Phys. Lett. 76, 867-869 (2000). [CrossRef]
  5. M. M. Vogel, S. M. Ulrich, R. Hafenbrak, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Influence of lateral electric fields on multiexcitonic transitions and fine structure of single quantum dots,” Appl. Phys. Lett. 91, 051904 (2007). [CrossRef]
  6. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002). [CrossRef]
  7. K. Kowalik, O. Krebs, A. Golnik, J. Suffczyński, P. Wojnar, J. Kossut, J. A. Gaj, and P. Voisin, “Manipulating the exciton fine structure of single CdTe/ZnTe quantum dots by an in-plane magnetic field,” Phys. Rev. B 75, 195340 (2007). [CrossRef]
  8. G. Jundt, L. Robledo, A. Högele, S. Fält, and A. Imamoğlu, “Observation of dressed excitonic states in a single quantum dot,” Phys. Rev. Lett. 100, 177401 (2008). [CrossRef] [PubMed]
  9. A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Emission spectrum of a dressed exciton-biexciton complex in a semiconductor quantum dot,” Phys. Rev. Lett. 101, 027401 (2008). [CrossRef] [PubMed]
  10. A. E. Siegman, Lasers (University Science Books, 1986).
  11. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550-1567 (1966). [CrossRef] [PubMed]
  12. P. Horowitz, and H. WinfieldThe Art of Electronics (Cambridge Univ. Press, 1989), pp. 431-2.
  13. G. S. Solomon, C. Santori, M. Pelton, J. Vučković, D. Fattal, E. Waks, and Y. Yamamoto, “Efficient, regulated single photons from quantum dots in post microcavities,” in Optics of Quantum Dots and Wires, G.S.Solomon and G.W.Bryant, eds. (Artech House, 2005), pp. 483-535.
  14. H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990). [CrossRef]
  15. D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005-3008 (1996). [CrossRef] [PubMed]
  16. V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944-9947 (2000). [CrossRef]
  17. A. Högele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, “Voltage-controlled optics of a quantum dot,” Phys. Rev. Lett. 93, 217401 (2004). [CrossRef] [PubMed]
  18. P. Frantsuzov, M. Kuno, B. Janko, and R. A. Marcus, “Universal emission intermittency in quantum dots, nanorods and nanowires,” Nat. Phys. 4, 519-522 (2008). [CrossRef]
  19. G. F. Franklin, D. J. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems (Prentice Hall, 2001).
  20. T. Baer, F. V. Kowalski, and J. L. Hall, “Frequency stabilization of a 0.633-μm He-Ne longitudinal Zeeman laser,” Appl. Opt. 19, 3173-3177 (1980). [CrossRef] [PubMed]
  21. A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes (McGraw Hill, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited