OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: 2315–2322

Broadband wavelength conversion based on apodized χ ( 2 ) grating

T. Umeki, M. Asobe, T. Yanagawa, O. Tadanaga, Y. Nishida, K. Magari, and H. Suzuki  »View Author Affiliations

JOSA B, Vol. 26, Issue 12, pp. 2315-2322 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1029 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We achieved apodization in a quasi-phase-matched (QPM) wavelength converter by changing the duty cycle of a χ ( 2 ) grating. The new design yields a large bandwidth and a flat phase-matching response with high conversion efficiency. Widely tunable 3 - μ m -band difference frequency generation was realized using an apodized QPM Li Nb O 3 ridge waveguide. We also demonstrated the simultaneous detection of the absorption lines of C H 4 and C 2 H 4 and obtained a broadband absorption spectrum of over 100 nm using the widely tunable source.

© 2009 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Nonlinear Optics

Original Manuscript: April 29, 2009
Revised Manuscript: October 15, 2009
Manuscript Accepted: October 18, 2009
Published: November 16, 2009

T. Umeki, M. Asobe, T. Yanagawa, O. Tadanaga, Y. Nishida, K. Magari, and H. Suzuki, "Broadband wavelength conversion based on apodized χ(2) grating," J. Opt. Soc. Am. B 26, 2315-2322 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Th. Toepfer, K. P. Petrov, Y. Mine, D. Jundt, R. F. Curl, and F. K. Tittel, “Room-temperature midinfrared laser sensor for trace gas detection,” Appl. Opt. 36, 8042-8049 (1997). [CrossRef]
  2. T. Yanagawa, O. Tadanaga, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “CH4 monitoring in ambient air by communication band laser-diode-based difference frequency generation in a quasi-phase-matched LiNbO3,” Appl. Phys. Lett. 89, 22115 (2006). [CrossRef]
  3. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “A direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39, 609-610 (2003). [CrossRef]
  4. O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006). [CrossRef]
  5. M. L. Bortz, M. Fujimura, and M. M. Fejer, “Increased acceptance bandwidth for quasi-phase-matched second-harmonic generation in LiNbO3 waveguides,” Electron. Lett. 30, 34-35 (1994). [CrossRef]
  6. K. Mizuuchi and K. Yamamoto, “Waveguide second-harmonic generation device with broadened flat quasi-phase-matching response by use of a grating structure with located phase shifts,” Opt. Lett. 23, 1880-1882 (1998). [CrossRef]
  7. Z. Xianglong, C. Xianfeng, W. Fei, C. Yuping, X. Yuxing, and C. Yingli, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun. 204, 407-411 (2002). [CrossRef]
  8. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett. 27, 1046-1048 (2002). [CrossRef]
  9. T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265-1276 (1990). [CrossRef]
  10. R. Kashyap, Fiber Bragg Gratings (Academic, 1999), pp. 195-223. [CrossRef]
  11. J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, “Amplitude modulation and apodization of quasi-phase-matched interactions,” Opt. Lett. 31, 604-606 (2006). [CrossRef] [PubMed]
  12. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second- harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992). [CrossRef]
  13. T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Widely tunable 3.4 μm band difference frequency generation using apodized χ(2) grating,” Opt. Lett. 32, 1129-1131 (2007). [CrossRef] [PubMed]
  14. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  15. M. H. Chou, K. R. Parameswaran, and T. Taira, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett. 24, 1157-1159 (1999). [CrossRef]
  16. M. Asobe, Y. Nishida, O. Tadanaga, H. Miyazawa, and H. Suzuki, “Wavelength conversion using quasi-phase-matched LiNbO3 waveguides,” IEICE Trans. Electron. E88-C, 335-342 (2005). [CrossRef]
  17. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435-436 (1993). [CrossRef]
  18. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597-3639 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited