OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: 2323–2330

Bistable Helmholtz bright solitons in saturable materials

J. M. Christian, G. S. McDonald, and P. Chamorro-Posada  »View Author Affiliations


JOSA B, Vol. 26, Issue 12, pp. 2323-2330 (2009)
http://dx.doi.org/10.1364/JOSAB.26.002323


View Full Text Article

Enhanced HTML    Acrobat PDF (450 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present, to the best of our knowledge, the first exact analytical solitons of a nonlinear Helmholtz equation with a saturable refractive-index model. These new two-dimensional spatial solitons have a bistable characteristic in some parameter regimes, and they capture oblique (arbitrary-angle) beam propagation in both the forward and backward directions. New conservation laws are reported, and the classic paraxial solution is recovered in an appropriate multiple limit. Analysis and simulations examine the stability of both solution branches, and stationary Helmholtz solitons are found to emerge from a range of perturbed input beams.

© 2009 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5940) Nonlinear optics : Self-action effects
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 17, 2009
Manuscript Accepted: October 12, 2009
Published: November 16, 2009

Citation
J. M. Christian, G. S. McDonald, and P. Chamorro-Posada, "Bistable Helmholtz bright solitons in saturable materials," J. Opt. Soc. Am. B 26, 2323-2330 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-12-2323


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518-1523 (1999). [CrossRef] [PubMed]
  2. Y. S. Kivshar, “Bright and dark spatial solitons in non-Kerr media,” Opt. Quantum Electron. 30, 571-614 (1998). [CrossRef]
  3. Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81-197 (1998). [CrossRef]
  4. P. Chamorro-Posada and G. S. McDonald, “Spatial Kerr soliton collisions at arbitrary angles,” Phys. Rev. E 74, 036609 (2006). [CrossRef]
  5. J. Sánchez-Curto, P. Chamorro-Posada, and G. S. McDonald, “Helmholtz solitons at nonlinear interfaces,” Opt. Lett. 32, 1126-1128 (2007). [CrossRef] [PubMed]
  6. J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8, 596-598 (1983). [CrossRef] [PubMed]
  7. O. Cohen, R. Uzdin, T. Carmon, J. Fleischer, M. Segev, and S. Odouov, “Collisions between optical spatial solitons propagating in opposite directions,” Phys. Rev. Lett. 89, 133901 (2002). [CrossRef] [PubMed]
  8. A. B. Aceves, J. V. Moloney, and A. C. Newell, “Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface,” Phys. Rev. A 39, 1809-1827 (1989). [CrossRef] [PubMed]
  9. A. B. Aceves, J. V. Moloney, and A. C. Newell, “Theory of light-beam propagation at nonlinear interfaces. II. Multiple-particle and multiple-interface extensions,” Phys. Rev. A 39, 1828-1840 (1989). [CrossRef] [PubMed]
  10. D. Mihalache and D. Mazilu, “TM-polarized nonlinear slab-guided waves in saturable media,” Solid State Commun. 60, 397-399 (1986). [CrossRef]
  11. D. Mihalache and D. Mazilu, “Stability and instability of nonlinear guided waves in saturable media,” Solid State Commun. 63, 215-217 (1987). [CrossRef]
  12. D. Mihalache and D. Mazilu, “Stability of nonlinear slab-guided waves in saturable media: a numerical analysis,” Phys. Lett. A 122, 381-384 (1987). [CrossRef]
  13. D. Mihalache, D. Mazilu, M. Bertolotti, and C. Sibilia, “Exact solution for transverse electric polarized nonlinear guided waves in saturable media,” J. Mod. Opt. 35, 1017-1027 (1988). [CrossRef]
  14. P. Roussignol, D. Ricard, J. Lukasik, and C. Flytzanis, “New results on optical phase conjugation in semiconductor-doped glasses,” J. Opt. Soc. Am. B 4, 5-13 (1987). [CrossRef]
  15. J.-L. Coutaz and M. Kull, “Saturation of the nonlinear index of refraction in semiconductor-doped glass,” J. Opt. Soc. Am. B 8, 95-98 (1991). [CrossRef]
  16. T. Catunda and L. A. Cury, “Transverse self-phase modulation in ruby and GdAlO3:Cr+3 crystals,” J. Opt. Soc. Am. B 7, 1445-1455 (1990). [CrossRef]
  17. Q. Wang Song, X. Wang, R. R. Birge, J. D. Downie, D. Timucin, and C. Gary, “Propagation of a Gaussian beam in a bacteriorhodopsin film,” J. Opt. Soc. Am. B 15, 1602-1609 (1998). [CrossRef]
  18. L. Demenicis, A. S. L. Gomes, D. V. Petrov, C. B. de Araújo, C. P. de Melo, C. G. dos Santos, and R. Souto-Maior, “Saturation effects in the nonlinear-optical susceptibility of poly(3-hexadecylthiophene),” J. Opt. Soc. Am. B 14, 609-614 (1997). [CrossRef]
  19. S. Bian, J. Frejlich, and K. H. Ringhofer, “Photorefractive saturable Kerr-type nonlinearity in photovoltaic crystals,” Phys. Rev. Lett. 78, 4035-4038 (1997). [CrossRef]
  20. D. N. Christodoulides and M. I. Carcalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12, 1628-1633 (1995). [CrossRef]
  21. S. Bian, M. Martinelli, and R. J. Horowicz, “Z-scan formula for saturable Kerr media,” Opt. Commun. 172, 347-353 (1999). [CrossRef]
  22. S. Gatz and J. Herrmann, “Soliton propagation in materials with saturable nonlinearity,” J. Opt. Soc. Am. B 8, 2296-2302 (1991). [CrossRef]
  23. J. Herrmann, “Propagation of ultrashort light pulses in fibers with saturable nonlinearity in the normal-dispersion region,” J. Opt. Soc. Am. B 8, 1507-1511 (1991). [CrossRef]
  24. D. Mihalache, M. Bertolotti, and C. Sibilia, “Nonlinear wave propagation in planar structures,” Prog. Opt. 27, 229-313 (1989).
  25. V. E. Wood, E. D. Evans, and R. P. Kenan, “Soluble saturable refractive-index nonlinearity model,” Opt. Commun. 69, 156-160 (1988). [CrossRef]
  26. W. Krolikowski and B. Luther-Davies, “Analytic solution for soliton propagation in a nonlinear saturable medium,” Opt. Lett. 17, 1414-1416 (1992). [CrossRef] [PubMed]
  27. S. Gatz and J. Herrmann, “Soliton collision and soliton fusion in dispersive materials with a linear and quadratic intensity depending refraction index change,” IEEE J. Quantum Electron. 28, 1732-1738 (1992). [CrossRef]
  28. A. E. Kaplan, “Bistable solitons,” Phys. Rev. Lett. 55, 1291-1294 (1985). [CrossRef] [PubMed]
  29. A. E. Kaplan, “Multistable self-trapping of light and multistable soliton pulse propagation,” IEEE J. Quantum Electron. 21, 1538-1543 (1985). [CrossRef]
  30. P. Chamorro-Posada, G. S. McDonald, and G. H. C. New, “Exact soliton solutions of the nonlinear Helmholtz equation: communication,” J. Opt. Soc. Am. B 19, 1216-1217 (2002). [CrossRef]
  31. M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365-1370 (1975). [CrossRef]
  32. S. Chi and Q. Guo, “Vector theory of self-focusing of an optical beam in Kerr media,” Opt. Lett. 20, 1598-1600 (1995). [CrossRef] [PubMed]
  33. B. Crosignani, A. Yariv, and S. Mookherjea, “Nonparaxial spatial solitons and propagation-invariant pattern solutions in optical Kerr media,” Opt. Lett. 29, 1254-1256 (2004). [CrossRef] [PubMed]
  34. A. Ciattoni, B. Crosignani, S. Mookherjea, and A. Yariv, “Nonparaxial dark solitons in optical Kerr media,” Opt. Lett. 30, 516-518 (2005). [CrossRef] [PubMed]
  35. P. Chamorro-Posada, G. S. McDonald, and G. H. C. New, “Propagation properties of nonparaxial spatial solitons,” J. Mod. Opt. 47, 1877-1886 (2000).
  36. J. M. Christian, G. S. McDonald, and P. Chamorro-Posada, “Bistable Helmholtz solitons in cubic-quintic materials,” Phys. Rev. A 76, 033833 (2007). [CrossRef]
  37. H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, 1980).
  38. P. Chamorro-Posada, G. S. McDonald, and G. H. C. New, “Nonparaxial beam propagation methods,” Opt. Commun. 192, 1-12 (2001). [CrossRef]
  39. J. M. Christian, G. S. McDonald, and P. Chamorro-Posada, “Helmholtz bright and boundary solitons,” J. Phys. A: Math. Theor. 40, 1545-1560 (2007). [CrossRef]
  40. J. M. Christian, G. S. McDonald, and P. Chamorro-Posada, “Helmholtz bright and boundary solitons--corrigendum,”J. Phys. A: Math. Theor. 40, 8601 (2007). [CrossRef]
  41. M. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in the medium with nonlinearity saturation,” Radiophys. Quantum Electron. 16, 783-789 (1973). [CrossRef]
  42. J. M. Christian, G. S. McDonald, R. J. Potton, and P. Chamorro-Posada, “Helmholtz solitons in power-law optical materials,” Phys. Rev. A 76, 033834 (2007). [CrossRef]
  43. S. Blair and K. Wagner, “Spatial soliton angular deflection logic gates,” Appl. Opt. 38, 6749-6772 (1999). [CrossRef]
  44. J. U. Kang, G. I. Stegeman, and J. S. Aitchison, “One-dimensional spatial soliton dragging, trapping, and all-optical switching in AlGaAs waveguides,” Opt. Lett. 21, 189-191 (1996). [CrossRef] [PubMed]
  45. Y.-D. Wu, “New all-optical switch based on the spatial soliton repulsion,” Opt. Express 14, 4005-4012 (2006). [CrossRef] [PubMed]
  46. Y.-D. Wu, “All-optical 1×N switching device by use of the phase modulation of spatial solitons,” Appl. Opt. 44, 4144-4147 (2005). [CrossRef] [PubMed]
  47. C. Anastassiou, M. Segev, K. Steiglitz, J. A. Giordmaine, M. Mitchell, M. Shih, S. Lan, and J. Martin, “Energy-exchange interactions between colliding vector solitons,” Phys. Rev. Lett. 83, 2332-2335 (1999). [CrossRef]
  48. J. Scheuer and M. Orenstein, “Interactions and switching of spatial soliton pairs in the vicinity of a nonlinear interface,” Opt. Lett. 24, 1735-1737 (1999). [CrossRef]
  49. Y. V. Kartashov, A. S. Zelenina, L. Torner, and V. A. Vysloukh, “Spatial soliton switching in quasi-continuous optical arrays,” Opt. Lett. 29, 766-768 (2004). [CrossRef] [PubMed]
  50. M. D. Feit and J. A. Fleck, “Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams,” J. Opt. Soc. Am. B 5, 633-640 (1988). [CrossRef]
  51. A. P. Sheppard and M. Haelterman, “Nonparaxiality stabilizes three dimensional soliton beams in Kerr media,” Opt. Lett. 23, 1820-1822 (1998). [CrossRef]
  52. T. A. Laine and A. T. Friberg, “Self-guided waves and exact solutions of the nonlinear Helmholtz equation,” J. Opt. Soc. Am. B 17, 751-757 (2000). [CrossRef]
  53. G. Baruch, G. Fibich, and S. Tsynkov, “High-order numerical solution of the nonlinear Helmholtz equation with axial symmetry,” J. Comput. Appl. Math. 204, 477-492 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited