OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: 2337–2341

Surface polariton generation and fluorescence enhancement using a superlens

Yingjie Zhang, Ruoyang Zhang, Zhishuai Zhang, Haibo Zhu, and Feng Song  »View Author Affiliations


JOSA B, Vol. 26, Issue 12, pp. 2337-2341 (2009)
http://dx.doi.org/10.1364/JOSAB.26.002337


View Full Text Article

Enhanced HTML    Acrobat PDF (209 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical study of fluorescence enhancement in the vicinity of a superlens slab, the other side of which is connected to a prism. The fluorescent molecule is regarded as an electric dipole. The dipole excitation rate follows Fermi’s golden rule, while its relaxation process has several pathways that can be analyzed within the range of classical electromagnetic theory. The calculated results are explained by surface modes and reveal a great potential of the proposed configuration in enhancing and detecting fluorescence.

© 2009 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(240.5420) Optics at surfaces : Polaritons
(260.2510) Physical optics : Fluorescence
(160.3918) Materials : Metamaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 8, 2009
Revised Manuscript: October 20, 2009
Manuscript Accepted: October 22, 2009
Published: November 17, 2009

Citation
Yingjie Zhang, Ruoyang Zhang, Zhishuai Zhang, Haibo Zhu, and Feng Song, "Surface polariton generation and fluorescence enhancement using a superlens," J. Opt. Soc. Am. B 26, 2337-2341 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-12-2337


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Gruhlke, W. R. Holland, and D. G. Hall, “Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin film,” Phys. Rev. Lett. 562838-2841 (1986). [CrossRef] [PubMed]
  2. H. Knobloch, H. Brunner, A. Leitner, F. Aussenegg, and W. J. Knoll, “Probing the evanescent field of propagating plasmon surface polaritons by fluorescence and Raman spectroscopies,” J. Chem. Phys. 98, 10093-10095 (1993). [CrossRef]
  3. J. Enderlein, “A theoretical investigation of single molecule fluorescence detection on thin metallic layers,” Biophys. J. 78, 2151-2158 (2000). [CrossRef] [PubMed]
  4. K. Vasilev, W. Knoll, and M. Kreiter, “Fluorescence intensities of chromophores in front of a thin metal film,” J. Chem. Phys. 120, 3439-3445 (2004). [CrossRef] [PubMed]
  5. J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153-169 (2004). [CrossRef]
  6. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005). [CrossRef] [PubMed]
  7. Y. J. Hung, I. I. Smolyaninov, C. C. Davis, and H. C. Wu, “Fluorescence enhancement by surface gratings,” Opt. Express 14, 10825-10830 (2006). [CrossRef] [PubMed]
  8. J. Gómez Rivas, G. Vecchi, and V. Giannini, “Surface plasmon-polariton mediated enhancement of the emission of dye molecules on metallic gratings,” New J. Phys. 10, 105007 (2008). [CrossRef]
  9. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  10. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  11. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  12. R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61-64 (2000). [CrossRef]
  13. R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys.: Condens. Matter 13, 1811-1819 (2001). [CrossRef]
  14. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Guided modes in negative-refractive-index waveguides,” Phys. Rev. E 67, 057602 (2003). [CrossRef]
  15. K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22, 1016-1023 (2005). [CrossRef]
  16. J. Kastel and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71, 011804(R) (2005). [CrossRef]
  17. J. P. Xu, Y. P. Yang, H. Chen, and S. Y. Zhu, “Spontaneous decay process of a two-level atom embedded in a one-dimensional structure containing left-handed material,” Phys. Rev. A 76, 063813 (2007). [CrossRef]
  18. L. S. Froufe-Pérez and R. Carminati, “Controlling the fluorescence lifetime of a single emitter on the nanoscale using a plasmonic superlens,” Phys. Rev. B 78, 125403 (2008). [CrossRef]
  19. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999).
  20. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited