OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: 2342–2346

Magneto-optical effect of DPS–DNG layered structure

J. H. Shahbazian and A. S. Karakashian  »View Author Affiliations


JOSA B, Vol. 26, Issue 12, pp. 2342-2346 (2009)
http://dx.doi.org/10.1364/JOSAB.26.002342


View Full Text Article

Enhanced HTML    Acrobat PDF (166 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of an applied static magnetic field on a periodic structure composed of alternating layers of double positive index of refraction (DPS) uniaxial and double negative index of refraction (DNG) has been studied. We present theoretical and numerical results of our investigation of the reflection spectra of the visible waves on this structure. This structure works as a bandpass filter, and our evaluation indicates this structure functions as a tunable optical bandpass filter. The bandgap effect varies with the periodic parameters of the DPS–DNG structure, applied magnetic field, incidence angle, and frequency.

© 2009 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(160.4670) Materials : Optical materials
(160.3918) Materials : Metamaterials
(160.5293) Materials : Photonic bandgap materials

ToC Category:
Materials

History
Original Manuscript: July 29, 2009
Manuscript Accepted: October 23, 2009
Published: November 18, 2009

Citation
J. H. Shahbazian and A. S. Karakashian, "Magneto-optical effect of DPS-DNG layered structure," J. Opt. Soc. Am. B 26, 2342-2346 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-12-2342


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785-4809 (1998). [CrossRef]
  4. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  6. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  7. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489-492 (2001). [CrossRef]
  8. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001). [CrossRef] [PubMed]
  9. P. Marko and C. M. Soukoulis, “Transmission studies of left-handed materials,” Phys. Rev. B 65, 033401 (2001). [CrossRef]
  10. D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  11. A.-G. Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisttpan, “MgB2-based negative refraction index metamaterial at visible frequency,” Phys. Rev. B 76, 195123 (2007). [CrossRef]
  12. J. Shahbazian and A. Karakashian, “Reflection of visible light on the anisotropic slab of DPS-DNG layers,” J. Opt. Soc. Am. B 26, B1-B6 (2009). [CrossRef]
  13. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295-2298 (1991). [CrossRef] [PubMed]
  14. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998). [CrossRef] [PubMed]
  15. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998). [CrossRef] [PubMed]
  16. M. J. Bloemer and M. Scalora “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676-1678 (1998). [CrossRef]
  17. A. Suarez-Garcia, R. del Coso, R. Serna, J. Solis, and C. N. Afonso, “Controlling the transmission at the surface plasmon resonance of nanocomposite films using photonic structures,” Appl. Phys. Lett. 83, 1842-1844 (2003). [CrossRef]
  18. M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013-5017 (2003). [CrossRef]
  19. B. Koopmans, M. van Kampen, J. T. Kohlhepp, and W. J. M. de Jonge, “Ultrafast magneto-optics in nickel: magnetism or optics?,” Phys. Rev. Lett. 85, 844-847 (2000). [CrossRef] [PubMed]
  20. V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and Th. Rasing, “Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films,” Phys. Rev. Lett. 78, 2004-2007 (1997). [CrossRef]
  21. F. A. Pinheiro1, A. S. Martinez, and L. C. Sampaio1, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84, 1435-1438 (2000). [CrossRef]
  22. M. Abe and T. Suwa, “Surface plasma resonance and magneto-optical enhancement in composites containing multicore-shell structured nanoparticles,” Phys. Rev. B 70, 235103-235118 (2004). [CrossRef]
  23. M. Rasa, A. P. Philipse, and D. Jamon, “Initial susceptibility, flow curves, and magneto-optics of inverse magnetic fluids,” Phys. Rev. E 68, 031402-031418 (2003). [CrossRef]
  24. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906-3910 (2003). [CrossRef]
  25. A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67, 165210-165230 (2003). [CrossRef]
  26. A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609-066626 (2001). [CrossRef]
  27. J. A. Monsoriu, R. A. Depine, M. L. Martnez-Ricci, and E. Silvestre, “Interaction between non-Bragg band gaps in 1D metamaterial photonic crystals,” Opt. Express 14, 12958-12967 (2006). [CrossRef] [PubMed]
  28. P. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953).
  29. W. J. Tabor, “Magnetooptic Materials,” in Laser Handbook, F.T.Arecchi and E.O.Schulz-Dubuis, eds. (North-Holland, 1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited