OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: 2370–2376

Surface-enhanced Raman imaging of fractal shaped periodic metal nanostructures

Jonas Beermann, Sergey M. Novikov, Ole Albrektsen, Michael G. Nielsen, and Sergey I. Bozhevolnyi  »View Author Affiliations


JOSA B, Vol. 26, Issue 12, pp. 2370-2376 (2009)
http://dx.doi.org/10.1364/JOSAB.26.002370


View Full Text Article

Enhanced HTML    Acrobat PDF (755 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Surface-enhanced Raman scattering (SERS) from Rhodamine 6G (R6G) homogenously adsorbed on fractal shaped 170-nm-period square arrays formed by 50-nm-high gold nanoparticles (diameters of 80, 100, or 120 nm are constant within each array), fabricated on a smooth gold film by electron-beam lithography, is characterized using high-resolution Raman microscopy with polarized excitation. Linear reflection spectroscopy verifies that all nanostructures exhibit resonances close to the 532 nm excitation wavelength used for Raman microscopy. The SERS images feature diffraction-limited ( 0.35 μ m ) bright spots corresponding to local SERS enhancements of up to 120 (relative to that from a smooth gold film), which are influenced by array boundaries, particle diameter, excitation polarization, and detected wavelength. We use six main Raman lines of the R6G spectrum for characterization of multiresonant local-field enhancements that are related to constructive interference of surface plasmon polaritons partially reflected inside the array boundaries.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(290.4210) Scattering : Multiple scattering
(180.5655) Microscopy : Raman microscopy
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: October 9, 2009
Manuscript Accepted: October 16, 2009
Published: November 19, 2009

Citation
Jonas Beermann, Sergey M. Novikov, Ole Albrektsen, Michael G. Nielsen, and Sergey I. Bozhevolnyi, "Surface-enhanced Raman imaging of fractal shaped periodic metal nanostructures," J. Opt. Soc. Am. B 26, 2370-2376 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-12-2370


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. M. Markel and T. F. George, Optics of Nanostructured Materials (Wiley, 2001).
  2. G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30, 519-526 (1984). [CrossRef]
  3. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014-4017 (1999). [CrossRef]
  4. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14, R597-R624 (2002). [CrossRef]
  5. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  6. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607-1609 (2005). [CrossRef] [PubMed]
  7. A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007). [CrossRef]
  8. A. K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335, 275-371 (2000). [CrossRef]
  9. S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett. 90, 197403 (2003). [CrossRef] [PubMed]
  10. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17, 3741-3753 (2009). [CrossRef] [PubMed]
  11. C. Even, S. Russ, V. Repain, P. Pieranski, and B. Sapoval, “Localizations in fractal drums: an experimental study,” Phys. Rev. Lett. 83, 726-729 (1999). [CrossRef]
  12. A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22, 185-187 (1969). [CrossRef]
  13. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923-7936 (1986). [CrossRef]
  14. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003). [CrossRef]
  15. J. Beermann and S. I. Bozhevolnyi, “Two-photon luminescence microscopy of field enhancement at gold nanoparticles,” Phys. Status Solidi C 2, 3983-3987 (2005). [CrossRef]
  16. J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15, 15234-15241 (2007). [CrossRef] [PubMed]
  17. J. Beermann, A. B. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 25, 1585-1592 (2008). [CrossRef]
  18. J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman microscopy with metal nanoparticle arrays,” J. Opt. A, Pure Appl. Opt. 11, 075004 (2009). [CrossRef]
  19. J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman imaging: periodic arrays and individual metal nanoparticles,” Opt. Express 17, 12698-12705 (2009). [CrossRef] [PubMed]
  20. K. Falconer, Fractal Geometry: Mathematical Foundations and Application, 2nd ed. (Wiley, 2003). [CrossRef]
  21. J. Beermann and S. I. Bozhevolnyi, “Microscopy of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. B 69, 155429 (2004). [CrossRef]
  22. T. Søndergaard, J. Beermann, A. E. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008). [CrossRef]
  23. J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16, 17302-17309 (2008). [CrossRef] [PubMed]
  24. J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Interaction of plasmon and molecular resonances for Rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129, 7647-7656 (2007). [CrossRef] [PubMed]
  25. I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576-6582 (2007). [CrossRef] [PubMed]
  26. S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing,” Appl. Phys. Lett. 86, 071103 (2005). [CrossRef]
  27. C. Bai and C. Wang, Single Molecule Chemistry and Physics (Springer, 2006).
  28. E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63-66 (2006). [CrossRef]
  29. A. Otto, “Surface-enhanced Raman scattering of adsorbates,” J. Raman Spectrosc. 22, 743-752 (1991). [CrossRef]
  30. D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited