OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: 2414–2422

Study of gain in photonic bandgap active InP waveguides

Giovanna Calò, Luciano Mescia, Vincenzo Petruzzelli, and Francesco Prudenzano  »View Author Affiliations

JOSA B, Vol. 26, Issue 12, pp. 2414-2422 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (904 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The parametric analysis of an active InP-based buried waveguide is proposed to optimize the amplification of the electric field at a given operation wavelength. The waveguide exploits a one-dimensional photonic crystal (PhC), the periodicity of which is perturbed by an active defective region. The analysis of the gain spectrum, as a function of the geometrical and electrical parameters, has been performed using proprietary codes, based on the bidirectional beam propagation method with method of lines, introducing rate equations to take into account the interaction of the matter with the photons. It is shown that the variations in the number of layers of the one-dimensional PhC, of the injection current, and of the length of the active defect strongly influence the behavior of the gain. A simple example of an active photonic switch is proposed as an application of the outlined design criteria.

© 2009 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.4815) Integrated optics : Optical switching devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Integrated Optics

Original Manuscript: August 4, 2009
Revised Manuscript: October 15, 2009
Manuscript Accepted: October 19, 2009
Published: November 23, 2009

Giovanna Calò, Luciano Mescia, Vincenzo Petruzzelli, and Francesco Prudenzano, "Study of gain in photonic bandgap active InP waveguides," J. Opt. Soc. Am. B 26, 2414-2422 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Pavesi and G. Guillot, Optical Interconnects: The Silicon Approach (Springer-Verlag, 2006).
  2. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246-1260 (2008). [CrossRef]
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  4. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  5. K. H. Lee, J. H. Baek, I. K. Hwang, Y. H. Lee, G. H. Lee, J. H. Ser, H. D. Kim, and H. E. Shin, “Square-lattice photonic-crystal surface-emitting lasers,” Opt. Express 12, 4136-4143 (2004). [CrossRef] [PubMed]
  6. C. L. Zhao, Z. Li, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Effect of a nonlinear photonic crystal fiber on the noise characterization of a distributed Raman amplifier,” IEEE Photon. Technol. Lett. 17, 561-563 (2005). [CrossRef]
  7. H. G. Park, S. K. Kim, S. H. Kwon, G. H. Kim, S. H. Kim, H. Y. Ryu, S. B. Kim, and Y. H. Lee, “Single-mode operation of two-dimensional photonic crystal laser with central post,” IEEE Photon. Technol. Lett. 15, 1327-1329 (2003). [CrossRef]
  8. H. Scherer, D. Gollub, M. Kamp, and A. Forchel, “Tunable GaInNAs lasers with photonic crystal mirrors,” IEEE Photon. Technol. Lett. 17, 2247-2249 (2005). [CrossRef]
  9. S. H. Kwon, S. H. Kim, S. K. Kim, Y. H. Lee, and S. B. Kim, “Small, low-loss heterogeneous photonic band-edge laser,” Opt. Express 12, 5356-5361 (2004). [CrossRef] [PubMed]
  10. V. Petruzzelli, “Accurate model of InxGa1−xAsyP1−y/InP active waveguides for optimal design of switches,” Int. J. Numer. Model. 16, 105-125 (2003) [CrossRef]
  11. A. D'Orazio, M. De Sario, G. Ficarella, V. Petruzzelli, and F. Prudenzano, “Design of active switches using an InxGa1−xAsyP1−y/InP heterostructure,” Int. J. Optoelectron. 11, 19-27 (1997).
  12. G. Calò, A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273-284 (2008). [CrossRef]
  13. D. Biallo, A. D'Orazio, and V. Petruzzelli, “Enhanced light extraction in Er3+ doped SiO2-TiO2 microcavity embedded in one-dimensional photonic crystal,” J. Non-Cryst. Solids 352, 3823-3828 (2006). [CrossRef]
  14. H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very low threshold photonic band edge lasers from free-standing triangular photonic crystal slabs,” in Proceedings of Quantum Electronics and Laser Science Conference (2002), p. 75.
  15. H. Ryu, H. G. Park, and Y. H. Lee, “Two-dimensional photonic crystal semiconductor lasers: computational design, fabrication, and characterization,” IEEE J. Sel. Top. Quantum Electron. 8, 891-908 (2002). [CrossRef]
  16. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39, 419-425 (2003). [CrossRef]
  17. I. S. Nefedov, V. N. Gusyatnikov, and YuA. Morozov, “Optical gain in one-dimensional photonic band gap structures with n-i-p-i crystal layers,” in Proceedings of International Conference on Transparent Optical Networks (2001), pp. 76-79.
  18. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113-122 (1990). [CrossRef]
  19. J. Gerdes, “Bidirectional eigenmode propagation analysis of optical waveguides based on method of lines,” Electron. Lett. 30, 550-551 (1994). [CrossRef]
  20. J. Manning, R. Olshansky, and C. B. Su, “The carrier-induced index change in AlGaAsP diode laser,” IEEE J. Quantum Electron. 19, 1525-1529 (1983). [CrossRef]
  21. J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107-4121 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited