OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: 2440–2444

Distributed CNOT gate via quantum Zeno dynamics

Xiao-Qiang Shao, Hong-Fu Wang, Li Chen, Shou Zhang, Yong-Fang Zhao, and Kyu-Hwang Yeon  »View Author Affiliations

JOSA B, Vol. 26, Issue 12, pp. 2440-2444 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show how the quantum Zeno effect can be exploited to implement the CNOT gate in two separated cavities with two atomic four-level tripod systems. In respective subspaces of the total Hilbert space, the evolution of the quantum system exhibits different dynamical properties due to the continuous coupling between atoms and cavities. The strictly numerical simulation reveals that a high average gate fidelity can be obtained in the presence of decoherence.

© 2009 Optical Society of America

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: June 5, 2009
Revised Manuscript: July 22, 2009
Manuscript Accepted: November 14, 2009
Published: November 24, 2009

Xiao-Qiang Shao, Hong-Fu Wang, Li Chen, Shou Zhang, Yong-Fang Zhao, and Kyu-Hwang Yeon, "Distributed CNOT gate via quantum Zeno dynamics," J. Opt. Soc. Am. B 26, 2440-2444 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Misra and E. C. G. Sudarshan, “The Zeno's paradox in quantum theory,” J. Math. Phys. 18, 756-763 (1977). [CrossRef]
  2. P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763-4766 (1995). [CrossRef] [PubMed]
  3. W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno effect,” Phys. Rev. A 41, 2295-2300 (1990). [CrossRef] [PubMed]
  4. J. Bernu, S. Deléglise, C. Sayrin, S. Kuhr, I. Dotsenko, M. Brune, J. M. Raimond, and S. Haroche, “Freezing a coherent field growth in a cavity by quantum Zeno effect,” Phys. Rev. Lett. 101, 180402 (2008). [CrossRef] [PubMed]
  5. E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and pulsed quantum Zeno effect,” Phys. Rev. Lett. 97, 260402 (2006). [CrossRef]
  6. P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12-19 (2000). [CrossRef]
  7. P. Facchi and S. Pascazio, Progress in Optics, E. Wolf, ed. (Elsevier, 2001), Vol. 42, p. 147.
  8. P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Phys. Rev. Lett. 89, 080401 (2002). [CrossRef] [PubMed]
  9. A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762-1765 (2000). [CrossRef] [PubMed]
  10. J. Pachos and H. Walther, “Quantum computation with trapped ions in an optical cavity,” Phys. Rev. Lett. 89, 187903 (2002). [CrossRef] [PubMed]
  11. H. Azuma, “Interaction-free generation of entanglement,” Phys. Rev. A 68, 022320 (2003). [CrossRef]
  12. J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the Zeno effect,” Phys. Rev. A 70, 062302 (2004). [CrossRef]
  13. O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat, “Counterfactual quantum computation through quantum interrogation,” Nature 439, 04523 (2006). [CrossRef]
  14. J. D. Franson, T. B. Pittman, and B. C. Jacobs, “Zeno logic gates using microcavities,” J. Opt. Soc. Am. B 24, 209-213 (2007). [CrossRef]
  15. C. R. Myers and A. Gilchrist, “Photon-loss-tolerant Zeno controlled-sign gate,” Phys. Rev. A 75, 052339 (2007). [CrossRef]
  16. X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two qubit quantum Zeno dynamics,” Phys. Rev. A 77, 062339 (2008). [CrossRef]
  17. Y. P. Huang and M. G. Moore, “Interaction- and measurement-free quantum Zeno gates for universal computation with single-atom and single-photon qubits,” Phys. Rev. A 77, 062332 (2008). [CrossRef]
  18. K. J. Xu, Y. P. Huang, M. G. Moore, and C. Piermarocchi, “Zeno quantum gates in semiconductor quantum dots,” arXiv. org e-print, 0810.4489v1, 24 October 2008, http://arxiv.org/abs/0810.4489v1.
  19. T. Pellizzari, “Quantum networking with optical fibers,” Phys. Rev. Lett. 79, 5242-5245 (1997). [CrossRef]
  20. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006). [CrossRef] [PubMed]
  21. Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007). [CrossRef]
  22. J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Euro. Phys. Lett. 80, 60001 (2007). [CrossRef]
  23. P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007). [CrossRef]
  24. L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007). [CrossRef]
  25. X. Y. Lü, L. G. Si, M. Wang, S. Z. Zhang, and X. Yang, “Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction,” J. Phys. B 41, 235502 (2008). [CrossRef]
  26. P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” arXiv.org:e-print, 0711.4280v2, 20 March 2009, http://arxiv.org/abs/0711.4280v2.
  27. M. A. Nielsen, “A simple formula for the average gate fidelity of a quantum dynamical operation,” Phys. Lett. A 303, 249-252 (2002). [CrossRef]
  28. A. G. White, A. Gilchrist, G. J. Pryde, J. L. O'Brien, M. J. Bremner, and N. K. Langford, “Measuring two-qubit gates,” J. Opt. Soc. Am. B 24, 172-183 (2007). [CrossRef]
  29. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited