OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: B111–B119

Optical properties of metallic meanders

Liwei Fu, Heinz Schweizer, Thomas Weiss, and Harald Giessen  »View Author Affiliations

JOSA B, Vol. 26, Issue 12, pp. B111-B119 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1060 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A vertical metallic meander structure with a rectangular corrugated surface profile represents a frequency-selective surface in which the excitation and interaction of localized surface plasmon modes are controlled in a flexible fashion by its geometrical parameters over a large spectral range. In this report we investigate the optical properties of metallic meanders numerically. Although the structure is simple from both the structural geometry and the nanofabrication point of view, its plasmonic band structure manifests rich features that would be very attractive for plasmonic functional devices. In particular, the short-range surface plasmon mode can be tuned by changing the meander depth without altering the long-range surface plasmon mode. To obtain deeper physical insight into the relationship between the structural geometry and its optical response, a transmission line equivalent circuit model is used. It is revealed that circuit parameters that were fitted from numerical scattering parameters have physical relationships with the structural parameters, which can be described by quasi-static or radiative descriptions. In certain frequency ranges, enhanced transmission occurs due to the interaction of magnetic and electric dipole resonances. The calculated effective material parameters reveal that enhanced transmission occurs around the near-zero index frequencies. The application potential of these structures as frequency filters is discussed.

© 2009 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(260.2110) Physical optics : Electromagnetic optics
(310.6860) Thin films : Thin films, optical properties
(160.3918) Materials : Metamaterials

Original Manuscript: August 13, 2009
Manuscript Accepted: September 14, 2009
Published: October 27, 2009

Virtual Issues
November 23, 2009 Spotlight on Optics

Liwei Fu, Heinz Schweizer, Thomas Weiss, and Harald Giessen, "Optical properties of metallic meanders," J. Opt. Soc. Am. B 26, B111-B119 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992-4999 (1999). [CrossRef]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  3. R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117-1120 (1985). [CrossRef] [PubMed]
  4. N. Bonod, S. Enoch, L. Li, E. Popov, and M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482-490 (2003). [CrossRef] [PubMed]
  5. D. Gerard, L. Salomon, F. de Fornel, and A. V. Zayats, “Analysis of the Bloch mode spectra of surface polaritonic crystals in the week and strong coupling regimes: grating-enhanced transmission at oblique incidence and suppression of SPP radiative losses,” Opt. Express 12, 3652-3662 (2004). [CrossRef] [PubMed]
  6. I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004). [CrossRef]
  7. Z. Chen, I. R. Hooper, and J. R. Sambles, “Coupled surface plasmons on thin silver gratings,” J. Opt. A, Pure Appl. Opt. 10, 015007 (2008). [CrossRef]
  8. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008). [CrossRef]
  9. T. Okamoto, F. H'Dhili, and S. Kawata, “Towards plasmonic band gap lasers,” Appl. Phys. Lett. 85, 3968-3970 (2004). [CrossRef]
  10. G. Winter and W. L. Barnes, “Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?” New J. Phys. 8, 125 (2006). [CrossRef]
  11. J.-C. Weeber, A. Bouhelier, G. Colas des France, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7, 1352-1359 (2007). [CrossRef] [PubMed]
  12. M. J. Gonzalez, A. L. Stepanov, J.-C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett. 32, 2704-2706 (2007). [CrossRef] [PubMed]
  13. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55-58 (2008). [CrossRef]
  14. G. Margheri, T. Del Rosso, S. Sottini, S. Trigari, and E. Giorgetti, “All-optical switches based on the coupling of surfaces plasmon polaritons,” Opt. Express 16, 9869-9883 (2008). [CrossRef] [PubMed]
  15. S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12, 3673-3685 (2004). [CrossRef] [PubMed]
  16. A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap structures for surface enhanced Raman scattering,” Opt. Express 16, 12469-12477 (2008). [CrossRef] [PubMed]
  17. A. Degiron and T. W. Ebbeson, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7, 590 (2005). [CrossRef]
  18. S. Wu, Q. Wang, X. Yin, J. Li, D. Zhu, S. Liu, and Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93, 101-113 (2008).
  19. W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134-11138 (2000). [CrossRef]
  20. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008). [CrossRef]
  21. C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. von Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B: Lasers Opt. 96, 749-755 (2009). [CrossRef]
  22. S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402 (2005). [CrossRef] [PubMed]
  23. H. Schweizer, L. Fu, H. Guo, N. Liu, and H. Giessen, “Negative permeability around 630 nm in nanofabricated vertical meander metamaterials,” Phys. Status Solidi A 204, 3886-3900 (2007). [CrossRef]
  24. R. Ulrich, “Far infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37-55 (1967). [CrossRef]
  25. N. Engheta, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005). [CrossRef] [PubMed]
  26. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005). [CrossRef] [PubMed]
  27. T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007). [CrossRef]
  28. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698-1702 (2007). [CrossRef] [PubMed]
  29. S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials 1, 40-43 (2007). [CrossRef]
  30. H. Schweizer, L. Fu, H. Guo, N. Liu, and H. Giessen, “Longitudinal capacitance design for optical left-handed metamaterials,” Phys. Status Solidi B 244, 1243-1250 (2007). [CrossRef]
  31. L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Analysis of metamaterials using transmission line models,” Appl. Phys. B: Lasers Opt. 86, 425-429 (2007). [CrossRef]
  32. L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Synthesis of transmission line models for metamaterial slabs at optical frequencies,” Phys. Rev. B 78, 115110 (2008). [CrossRef]
  33. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech, 2003).
  34. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003). [CrossRef]
  35. T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11, 114019 (2009). [CrossRef]
  36. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870-1876 (1996). [CrossRef]
  37. G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16, 2510-2516 (1999). [CrossRef]
  38. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  39. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006). [CrossRef] [PubMed]
  40. I. R. Hooper and J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B 65, 165432 (2002). [CrossRef]
  41. W. L. Barnes, T. W. Presit, S. L. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227-6244 (1996). [CrossRef]
  42. B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000). [CrossRef]
  43. I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25, 595-597 (2000). [CrossRef]
  44. G. V. Eleftheriades, Omar Siddiqui, and Ashwin K. Iyer, “Transmission line models for negative refractive index media and associated implementations without excess resonators,” IEEE Microw. Wirel. Compon. Lett. 13, 51-53 (2003). [CrossRef]
  45. C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials 1, 62-80 (2007). [CrossRef]
  46. R. N. Bracewell, “Analogues of an ionized medium,” Wireless Engineer 31, 320-326 (1954).
  47. D. M. Pozar, Microwave Engineering, 3rd. ed. (Wiley, 2005).
  48. J. Parsons, E. Hendry, B. Augui, W. L. Barnes, and J. R. Sambles, “Localized modes of subwavelength hole arrays in thin metal films,” Proc. SPIE 6988, 69880Y (2008). [CrossRef]
  49. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  50. S. Maslovski, S. Tretyakov, and P. Alitalo, “Near-field enhancement and imaging in double planar polariton-resonant structures,” J. Appl. Phys. 96, 1293-1300 (2004). [CrossRef]
  51. A. Alù and N. Engheta, “Physical insight into the growing evanescent fields of double-negative metamaterial lenses using their circuit equivalence,” IEEE Trans. Antennas Propag. 54, 268-272 (2006). [CrossRef]
  52. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002). [CrossRef] [PubMed]
  53. A. Sihvola and I. Lindell, “EZNZ vs. ENZ metamaterials: anisotropy flavors extreme parameters,” in Proceedings of 2nd European Topical Meeting on Nanophotonics and Metamaterials (NanoMeta, 2009), Seefeld, Austria, January 5-8, 2009.
  54. A. Koeck, E. Gornik, M. Hauser, and W. Beinstingl, “Strongly directional emission from AlGaAs/GaAs light-emitting diodes,” Appl. Phys. Lett. 57, 2327-2329 (1990). [CrossRef]
  55. P. O. Kellermann, N. Finger, W. Schrenk, E. Gornik, R. Winterhoff, H. Schweizer, and F. Scholz, “Wavelength-adjustable surface-emitting single-mode laser diodes with contradirectional surface-mode coupling,” Appl. Phys. Lett. 75, 3748-3750 (1999). [CrossRef]
  56. N. Yu, J. Fan, Q. Wang, C. Pflgl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564-570 (2008). [CrossRef]
  57. H. Summers, D. Matthews, K. Njoh, and R. Errington, “Beam-steering at optical frequencies using metal-grating antennas,” in Proceedings of the 19th IEEE Lasers and Electro-Optics Society Meeting (IEEE, 2006), pp. 478-479.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited