OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: B130–B138

Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications

Arseniy I. Kuznetsov, Andrey B. Evlyukhin, Carsten Reinhardt, Andreas Seidel, Roman Kiyan, Wei Cheng, Aleksandr Ovsianikov, and Boris N. Chichkov  »View Author Affiliations

JOSA B, Vol. 26, Issue 12, pp. B130-B138 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (618 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel approach, to our knowledge, for the fabrication of metallic micro- and nanostructures based on femtosecond laser-induced transfer of metallic nanodroplets is developed. The controllable fabrication of high-quality spherical gold micro- and nanoparticles with radius of 100 800 nm is realized. In combination with the two-photon polymerization technique, this approach provides unique possibilities for the realization of plasmonic components and metamaterials. Polymer woodpile structures filled with gold nanoparticles are demonstrated. Scattering of surface plasmon polaritons on an individual spherical gold nanoparticle fabricated by the proposed method is investigated. The obtained results are supported by a numerical modeling using the Green’s tensor approach.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(240.6680) Optics at surfaces : Surface plasmons
(290.5850) Scattering : Scattering, particles
(160.3918) Materials : Metamaterials

Original Manuscript: August 13, 2009
Manuscript Accepted: September 14, 2009
Published: November 3, 2009

Arseniy I. Kuznetsov, Andrey B. Evlyukhin, Carsten Reinhardt, Andreas Seidel, Roman Kiyan, Wei Cheng, Aleksandr Ovsianikov, and Boris N. Chichkov, "Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications," J. Opt. Soc. Am. B 26, B130-B138 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668-677 (2003). [CrossRef]
  2. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806-3819 (2007). [CrossRef]
  3. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  4. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000). [CrossRef]
  5. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003). [CrossRef]
  6. V. Lomakin, M. Lu, and E. Michielssen, “Optical wave properties of nano-particle chains coupled with a metal surface,” Opt. Express 15, 11827-11842 (2007). [CrossRef] [PubMed]
  7. D. van Orden, Y. Fainman, and V. Lomakin, “Optical waves on nanoparticle chains coupled with surfaces,” Opt. Lett. 34, 422-424 (2009). [CrossRef] [PubMed]
  8. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003). [CrossRef] [PubMed]
  9. J. Dai, F. Cajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77, 115419 (2008). [CrossRef]
  10. K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71, 115409 (2005). [CrossRef]
  11. M. I. Stockman, “Spasers explained,” Nature Photonics 2, 327-329 (2008). [CrossRef]
  12. J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209, 167 (2003). [CrossRef] [PubMed]
  13. A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30, 1524-1526 (2005). [CrossRef] [PubMed]
  14. A. B. Evlyukhin, S. I. Bozhevolniy, A. L. Stepanov, and J. R. Krenn, “Splitting of a surface plasmon polariton beam by chains of nanoparticles,” Appl. Phys. B: Lasers Opt. 84, 29-34 (2006). [CrossRef]
  15. I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576-6582 (2007). [CrossRef] [PubMed]
  16. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15, 16667-16680 (2007). [CrossRef] [PubMed]
  17. I. P. Radko, A. B. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Refracting surface plasmon polaritons with nanoparticle arrays,” Opt. Express 16, 3924-3930 (2008). [CrossRef] [PubMed]
  18. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  19. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  20. J. B. Pendry, “Optics: Positively negative,” Nature 423, 22-23 (2003). [CrossRef] [PubMed]
  21. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  22. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001). [CrossRef] [PubMed]
  23. A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell's law,” Phys. Rev. Lett. 90, 137401 (2003). [CrossRef] [PubMed]
  24. A. D. Boardman, N. King, and L. Velasco, “Negative refraction in perspective,” Electromagnetics 25, 365-389 (2005). [CrossRef]
  25. A. D. Boardman and K. Marinov, “Nonradiating and radiating configurations driven by left-handed metamaterials,” J. Opt. Soc. Am. B 23, 543-552 (2006). [CrossRef]
  26. E. Ozbay, “The magical world of photonic metamaterials,” Opt. Photon. News19, 22-27 (2008). [CrossRef]
  27. V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photonics 1, 41-48 (2007). [CrossRef]
  28. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11, 735-745 (2003). [CrossRef] [PubMed]
  29. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005). [CrossRef] [PubMed]
  30. C. Rockstuhl and T. Scharf, “A metamaterial based on coupled metallic nanoparticles and its band-gap property,” J. Microsc. 229, 281-286 (2008). [CrossRef] [PubMed]
  31. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Electrodynamics of Continuous Media, Vol. 8 (Pergamon, 1984).
  32. C. F. Bohren and D. R. Huffman, Absorption and Scattering Light by Small Particles (Wiley-Interscience, 1998). [CrossRef]
  33. M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photon. 3, 450-452 (2009). [CrossRef]
  34. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17, 18820-18825 (2009). [CrossRef]
  35. I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601-605 (1998). [CrossRef]
  36. P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films,” Appl. Surf. Sci. 151, 159-170 (1999). [CrossRef]
  37. D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86, 244103 (2005). [CrossRef]
  38. D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006). [CrossRef]
  39. L. Yang, C.-Y. Wang, X.-C. Ni, Z.-J. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006). [CrossRef]
  40. A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by fanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008). [CrossRef]
  41. A. Boltasseva, T. Søndergaard, T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, and J. M. Hvam, “Propagation of long-range surface plasmon polaritons in photonic crystals,” J. Opt. Soc. Am. B 22, 2027-2038 (2005). [CrossRef]
  42. C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657-699 (1996). [CrossRef]
  43. T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of finite-size surface plasmon polariton band-gap structures,” Phys. Rev. B 71, 125429 (2005). [CrossRef]
  44. T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study,” Phys. Rev. B 69, 045422 (2004). [CrossRef]
  45. A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007). [CrossRef]
  46. J. P. Kottmann and O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719-1726 (2000). [CrossRef]
  47. M. Paulus and O. J. F. Martin, “Light propagation and scattering in stratified media: a Green's tensor approach,” J. Opt. Soc. Am. A 18, 854-861 (2001). [CrossRef]
  48. B. T. Draine, “The disctrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988). [CrossRef]
  49. A. B. Evlyukhin and S. I. Bozhevolnyi, “Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations,” Phys. Rev. B 71, 134304 (2005). [CrossRef]
  50. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited