OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: B139–B142

High-efficiency surface plasmon polariton source

Jian Wang, Xiaoshuang Chen, and Wei Lu  »View Author Affiliations


JOSA B, Vol. 26, Issue 12, pp. B139-B142 (2009)
http://dx.doi.org/10.1364/JOSAB.26.00B139


View Full Text Article

Enhanced HTML    Acrobat PDF (4856 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The increasing application of plasmonic devices causes the requirement of high-efficiency surface plasmon polariton sources. Here, we present a new surface plasmon polariton coupler based on double nanoslits. By carefully choosing the geometry parameters of the structure, the coupling efficiency can be greatly enhanced through constructive interference between the double or multislits and the input surface modulation. The good functionalities of the device such as low noise, unidirectionality and high efficiency indicate that such a structure may be a good choice as a surface plasmon polariton source for rapid development of plasmonics.

© 2009 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.6080) Optical devices : Sources
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

History
Original Manuscript: June 26, 2009
Revised Manuscript: August 25, 2009
Manuscript Accepted: September 18, 2009
Published: November 9, 2009

Citation
Jian Wang, Xiaoshuang Chen, and Wei Lu, "High-efficiency surface plasmon polariton source," J. Opt. Soc. Am. B 26, B139-B142 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-12-B139


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39-46 (2007). [CrossRef] [PubMed]
  2. Vladimir P. Drachev, Mark D. Thoreson, Eldar N. Khaliullin, V. Jo Davisson, and Vladimir M. Shalaev, “Surface-enhanced Raman difference between human insulin and insulin lispro detected with adaptive nanostructures,” J. Phys. Chem. B 108, 18046-18052 (2004). [CrossRef]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005). [CrossRef] [PubMed]
  4. Zhaowei Liu, Hyesog Lee, Yi Xiong, Cheng Sun, and Xiang Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007). [CrossRef] [PubMed]
  5. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714-1716 (2002). [CrossRef]
  6. L. Yin, V. K. Vlasko-Vlasov, J. Pearon, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399-1402 (2005). [CrossRef] [PubMed]
  7. V. M. Shalaev and S. Kawata, Nanophotonics With Surface Plasmon, 1st. ed. (Elsevier, 2007).
  8. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  9. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F. R. Aussenegg, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51-53 (2001). [CrossRef]
  10. H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404-406 (2002). [CrossRef]
  11. E. Devauxa, T. W. Ebbesen, L. Pasteur, J. C. Weeber, and Alain Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83, 4396-4398 (2003). [CrossRef]
  12. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welpb, S. H. Changc, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467-469 (2004). [CrossRef]
  13. F. L. Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit coupler for surface plasmons,” Nat. Phys. 3, 324-328 (2007). [CrossRef]
  14. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time Domain Method, 2nd. ed. (Artech House, 2000).
  15. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 44, 2332-2337 (2005). [CrossRef]
  16. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005). [CrossRef]
  17. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited