OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: B143–B147

Effective properties of terahertz double split-ring resonators at oblique incidence

Christoph Menzel, Ranjan Singh, Carsten Rockstuhl, Weili Zhang, and Falk Lederer  »View Author Affiliations


JOSA B, Vol. 26, Issue 12, pp. B143-B147 (2009)
http://dx.doi.org/10.1364/JOSAB.26.00B143


View Full Text Article

Enhanced HTML    Acrobat PDF (382 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By combining experimental and theoretical efforts we study the optical properties of single-layer, double split-ring resonators at oblique incidences for terahertz frequencies and reveal their angular dependent effective properties. Contrary to what is usually anticipated, for incidence angles deviating from normal we do not observe any significant dispersion in the effective permeability. Effective properties are dominated instead by a strong dispersion in the effective permittivity, causing also the wavenumber in the medium to be large. The structure is shown to possess almost invariant effective properties for oblique incidences.

© 2009 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(240.5420) Optics at surfaces : Polaritons
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

History
Original Manuscript: July 31, 2009
Revised Manuscript: October 20, 2009
Manuscript Accepted: October 20, 2009
Published: November 20, 2009

Citation
Christoph Menzel, Ranjan Singh, Carsten Rockstuhl, Weili Zhang, and Falk Lederer, "Effective properties of terahertz double split-ring resonators at oblique incidence," J. Opt. Soc. Am. B 26, B143-B147 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-12-B143


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics: negative refractive index at optical wavelengths,” Science 315, 47-49 (2007). [CrossRef] [PubMed]
  2. V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photon. 1, 41-48 (2007). [CrossRef]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001). [CrossRef] [PubMed]
  4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  5. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  6. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005). [CrossRef] [PubMed]
  7. B. Kanté, A. de Lustrac, J.-M. Lourtioz, and F. Gadot, “Engineering resonances in infrared metamaterials,” Opt. Express 16, 6774-6784 (2008). [CrossRef] [PubMed]
  8. J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic and electric excitations in split ring resonators,” Opt. Express 15, 17881-17890 (2007). [CrossRef] [PubMed]
  9. A. W. Clark, A. K. Sheridan, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Tuneable visible resonances in crescent shaped nano-split-ring resonators,” Appl. Phys. Lett. 91, 093109 (2007). [CrossRef]
  10. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30, 3198-3200 (2005). [CrossRef] [PubMed]
  11. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  12. J. F. O'Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786-1795 (2008). [CrossRef] [PubMed]
  13. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17, 1107-1115 (2009). [CrossRef] [PubMed]
  14. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials 1, 1-17 (2008). [CrossRef]
  15. M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5, 400-406 (2009). [CrossRef] [PubMed]
  16. C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, “The origin of magnetic polarizability in metamaterials at optical frequencies-an electrodynamic approach,” Opt. Express 15, 8871-8883 (2007). [CrossRef] [PubMed]
  17. T. Driscoll, D. N. Basov, W. J. Padilla, J. J. Mock, and D. R. Smith, “Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements,” Phys. Rev. B 75, 115114 (2007). [CrossRef]
  18. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  19. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006-2015 (1990). [CrossRef]
  20. R. Singh, E. Smirnova, A. J. Taylor, J. F. O'Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express 16, 6537-6543 (2008). [CrossRef] [PubMed]
  21. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  22. X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005). [CrossRef]
  23. Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79, 026610 (2009). [CrossRef]
  24. C. Menzel, C. Rockstuhl, T. Paul, T. Pertsch, and F. Lederer, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008). [CrossRef]
  25. A. K. Azad, J. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split ring resonators,” Opt. Lett. 31, 634-636 (2006). [CrossRef] [PubMed]
  26. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758-2767 (1997). [CrossRef]
  27. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943-2945 (2004). [CrossRef]
  28. C. Rockstuhl, T. Zentgraf, T. P. Meyrath, H. Giessen, and F. Lederer, “Resonances in complementary metamaterials and nanoapertures,” Opt. Express 16, 2080-2090 (2008). [CrossRef] [PubMed]
  29. F. J. Rodriguez-Fortuno, C. Garcia-Meca, R. Ortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075103 (2009). [CrossRef]
  30. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33, 848-850 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited