OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: B148–B155

Beyond the zero-diffraction regime in optical cavities with a left-handed material

Pascal Kockaert, Philippe Tassin, Irina Veretennicoff, Guy Van der Sande, and Mustapha Tlidi  »View Author Affiliations

JOSA B, Vol. 26, Issue 12, pp. B148-B155 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (146 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The combination of right-handed and left-handed materials offers the possibility to design devices in which the mean diffraction is zero. Such systems are encountered, for example, in nonlinear optical cavities, where a true zero-diffraction regime could lead to the formation of patterns with arbitrarily small sizes. In practice, the minimal size is limited by nonlocal terms in the equation of propagation. We study the nonlocal properties of light propagation in a nonlinear optical cavity containing a right-handed and a left-handed material. We obtain a model for the propagation, including two sources of nonlocality: the spatial dispersion of the materials in the cavity, and the higher-order terms of the mean field approximation. We apply these results to a particular case and derive an expression for the parameter fixing the minimal size of the patterns.

© 2009 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(140.4780) Lasers and laser optics : Optical resonators
(160.4330) Materials : Nonlinear optical materials
(160.3918) Materials : Metamaterials
(190.6135) Nonlinear optics : Spatial solitons

Original Manuscript: August 6, 2009
Manuscript Accepted: September 27, 2009
Published: November 30, 2009

Pascal Kockaert, Philippe Tassin, Irina Veretennicoff, Guy Van der Sande, and Mustapha Tlidi, "Beyond the zero-diffraction regime in optical cavities with a left-handed material," J. Opt. Soc. Am. B 26, B148-B155 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Smith, W. J. Padilla, D. C. Vier, D. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001). [CrossRef] [PubMed]
  3. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  4. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489-491 (2001). [CrossRef]
  5. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell's law,” Phys. Rev. Lett. 90, 107401 (2003). [CrossRef] [PubMed]
  6. A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell's law,” Phys. Rev. Lett. 90, 137401 (2003). [CrossRef] [PubMed]
  7. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 6, 788-792 (2004). [CrossRef]
  8. K. Aydin, M. Guven, L. Kafesaki, C. Zhang, M. Soukoulis, and M. Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Lett. 29, 2623-2625 (2004). [CrossRef] [PubMed]
  9. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005). [CrossRef] [PubMed]
  10. T. F. Gundogdu, I. Tsiapa, A. Kostopoulos, G. Konstantinidis, N. Katsarakis, R. S. Penciu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Experimental demonstration of negative magnetic permeability in the far-infrared frequency regime,” Appl. Phys. Lett. 89, 084103 (2006). [CrossRef]
  11. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  12. N. Engheta, “An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability,” IEEE Antennas Wireless Propag. Lett. 1, 10-13 (2002). [CrossRef]
  13. A. Alu, N. Engheta, A. Erentok, and R. W. Ziolkowski, “Single-negative, double-negative and low index metamaterials and their electromagnetic applications,” IEEE Trans. Antennas Propag. 49, 23-36 (2007).
  14. P. Tassin, X. Sahyoun, and I. Veretennicoff, “Miniaturization of photonic waveguides by the use of left-handed materials,” Appl. Phys. Lett. 92, 203111 (2008). [CrossRef]
  15. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  16. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  17. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations,” Photonics Nanostruct. Fundam. Appl. 6, 87-95 (2008). [CrossRef]
  18. A. A. Zharov, N. A. Zharova, I. V. Shadrivov, and Y. S. Kivshar, “Subwavelength imaging with opaque nonlinear left-handed lenses,” Appl. Phys. Lett. 87, 091104 (2005). [CrossRef]
  19. N. Lazarides and G. P. Tsironis, “Coupled nonlinear Schrödinger field equations for electromagnetic wave propagation in nonlinear left-handed materials,” Phys. Rev. E 71, 036614 (2005). [CrossRef]
  20. G. D'Aguanno, N. Mattiucci, M. Scalora, and M. J. Bloemer, “Bright and dark gap solitons in a negative index Fabry-Perot etalon,” Phys. Rev. Lett. 93, 213902 (2004). [CrossRef] [PubMed]
  21. V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B 69, 165112 (2004). [CrossRef]
  22. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Second-harmonic generation in nonlinear left-handed metamaterials,” J. Opt. Soc. Am. B 23, 529-534 (2006). [CrossRef]
  23. P. Tassin, L. Gelens, J. Danckaert, I. Veretennicoff, G. Van der Sande, P. Kockaert, and M. Tlidi, “Dissipative structures in left-handed material cavity optics,” Chaos 17, 037116 (2007). [CrossRef] [PubMed]
  24. K. Staliunas, “Midband dissipative spatial solitons,” Phys. Rev. Lett. 91, 053901 (2003). [CrossRef] [PubMed]
  25. P. Kockaert, P. Tassin, G. V. der Sande, I. Veretennicoff, and M. Tlidi, “Negative diffraction pattern dynamics in nonlinear cavities with left-handed materials,” Phys. Rev. A 74, 033822 (2006). [CrossRef]
  26. L. Gelens, G. Van der Sande, P. Tassin, M. Tlidi, P. Kockaert, D. Gomila, I. Veretennicoff, and J. Danckaert, “Impact of nonlocal interactions in dissipative systems: towards minimal-sized localized structures,” Phys. Rev. A 75, 063812 (2007). [CrossRef]
  27. L. Gelens, D. Gomila, G. Van der Sande, J. Danckaert, P. Colet, and M. A. Matías, “Dynamical instabilities of dissipative solitons in nonlinear optical cavities with nonlocal materials,” Phys. Rev. A 77, 033841 (2008). [CrossRef]
  28. A. D. Boardman, K. Marinov, D. I. Pushkarov, and A. Shivarova, “Influence of nonlinearly induced diffraction on spatial solitary waves,” Opt. Quantum Electron. 32, 49-62 (2000). [CrossRef]
  29. A. D. Boardman, P. Egan, R. C. Mitchell-Thomas, Y. G. Rapoport, and N. J. King, “Weakly and strongly nonlinear waves in negative phase metamaterials,” Proc. SPIE 7029, 70291F (2008). [CrossRef]
  30. V. M. Agranovich and V. L. Ginzburg, “Crystal optics with spatial dispersion” in Progress in Optics, E.Wolf, ed. (North-Holland, 1971), Vol. IX, Chap. 6, pp. 235-280. [CrossRef]
  31. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).
  32. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999).
  33. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1925).
  34. L. Landau and E. Lifchitz, Électrodynamique des Milieux Continus (Mir, 1969).
  35. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53-55 (2007). [CrossRef]
  36. K. Cho, “A single susceptibility scheme of macroscopic Maxwell equations: beyond the 'E, D, B, H' approach,” J. Phys. Condens. Matter 20, 175202 (2008). [CrossRef]
  37. A. P. Vinogradov and A. V. Aivazyan, “Scaling theory for homogenization of the Maxwell equations,” Phys. Rev. E 60, 987-993 (1999). [CrossRef]
  38. D. Sjöberg, “Homogenization of dispersive material parameters for Maxwell's equations using a singular value decomposition,” Multiscale Model. Simul. 4, 760-789 (2005). [CrossRef]
  39. D. Sjöberg, “A modified Drude-Born-Fedorov model for isotropic chiral media, obtained by finite scale homogenization,” J. Phys. D 41, 155412 (2008). [CrossRef]
  40. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  41. K. Staliunas, C. Serrat, R. Herrero, C. Cojocaru, and J. Trull, “Subdiffractive light pulses in photonic crystals,” Phys. Rev. E 74, 016605 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited