OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: B161–B169

Metamaterials: transforming theory into reality

Natalia M. Litchinitser and Vladimir M. Shalaev  »View Author Affiliations


JOSA B, Vol. 26, Issue 12, pp. B161-B169 (2009)
http://dx.doi.org/10.1364/JOSAB.26.00B161


View Full Text Article

Enhanced HTML    Acrobat PDF (557 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metamaterials constitute a new area of science that is expanding our fundamental understanding of the behavior of the propagation of electromagnetic waves and their interactions, and providing new solutions for a wide range of applications from optical communications and defense to biological imaging. In this brief review, we focus on recent progress in theoretical, numerical, and experimental studies of linear and nonlinear optical properties of negative index materials and in the emerging field of transformation optics.

© 2009 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Metamaterials

History
Original Manuscript: October 13, 2009
Manuscript Accepted: October 14, 2009
Published: November 30, 2009

Citation
Natalia M. Litchinitser and Vladimir M. Shalaev, "Metamaterials: transforming theory into reality," J. Opt. Soc. Am. B 26, B161-B169 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-12-B161


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  3. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351-1353 (2004). [CrossRef] [PubMed]
  4. V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  5. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]
  6. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434-438 (2006). [CrossRef]
  7. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006). [CrossRef] [PubMed]
  8. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53-55 (2007). [CrossRef]
  9. U. K. Chettiar, S. Xiao, A. V. Kildishev, W. Cai, H.-K. Yuan, V. P. Drachev, and V. M. Shalaev, “Optical metamagnetism and negative-index metamaterials,” MRS Bull. 33, 921-926 (2008). [CrossRef]
  10. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478-3480 (2009). [CrossRef] [PubMed]
  11. G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32, 551-553 (2007). [CrossRef] [PubMed]
  12. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008). [CrossRef] [PubMed]
  13. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nature Mater. 7, 31-37 (2008). [CrossRef]
  14. S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101 (2003). [CrossRef]
  15. T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index materials: going optical,” IEEE J. Sel. Top. Quantum Electron. 12, 1106-1115 (2006). [CrossRef]
  16. Y. Sivan, S. Xiao, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Frequency-domain simulations of a negative-index material with embedded gain,” Opt. Express 17, in press (2009). [CrossRef]
  17. A. K. Popov and V. M. Shalaev, “Negative-index metamaterials: second-harmonic generation, Manley-Rowe relations and parametric amplifications,” Appl. Phys. B: Photophys. Laser Chem. 84, 131-137 (2006). [CrossRef]
  18. A. K. Popov and V. M. Shalaev, “Compensating losses in negative-index metamaterials by optical parametric amplification,” Opt. Lett. 31, 2169-2171 (2006). [CrossRef] [PubMed]
  19. A. K. Popov, S. A. Myslivets, T. F. George, and V. M. Shalaev, “Four-wave mixing, quantum control and compensating losses in doped negative-index photonic metamaterials,” Opt. Lett. 32, 3044-3046 (2007). [CrossRef] [PubMed]
  20. A. K. Popov and S. A. Myslivets, “Transformable broad-band transparency and amplification in negative-index films,” Appl. Phys. Lett. 93, 191117 (2008). [CrossRef]
  21. N. M. Litchinitser and V. M. Shalaev, “Loss as a route to transparency,” Nature Photon. 3, 75-76 (2009). [CrossRef]
  22. A. K. Popov, S. A. Myslivets, and V. M. Shalaev, “Microscopic mirrorless negative-index optical parametric oscillator,” Opt. Lett. 34, 1165-1167 (2009). [CrossRef] [PubMed]
  23. A. K. Popov, S. A. Myslivets, and V. M. Shalaev, “Resonant nonlinear optics of backward waves in negative-index metamaterials,” Appl. Phys. B: Photophys. Laser Chem. 96, 315-323 (2009). [CrossRef]
  24. N. Sudarkin and P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764-766 (1989).
  25. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic surfaces,” Opt. Express 12, 4072-4079 (2004). [CrossRef] [PubMed]
  26. S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258, 295-299 (2006). [CrossRef]
  27. J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401 (2005). [CrossRef] [PubMed]
  28. N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85, 5040-5042 (2004). [CrossRef]
  29. I. Avrutzki,“Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B 70, 155416 (2004). [CrossRef]
  30. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmon resonance in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31, 3022-3024 (2006). [CrossRef] [PubMed]
  31. A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75, 085436 (2007). [CrossRef]
  32. J. A. Gordon and R. Ziolkowsky, “The design and simulated performance of a coated nano-particle laser,” Opt. Express 15, 2622-2653 (2007). [CrossRef] [PubMed]
  33. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008). [CrossRef] [PubMed]
  34. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing-spaser,” Nature Photon. 2, 351-354 (2008). [CrossRef]
  35. I. De Leon and P. Berini, “Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media,” Phys. Rev. B 78, 161401 (2008). [CrossRef]
  36. M. Ambati, S. H. Nam, E. Ullin-Avilla, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8, 3998-4001 (2008). [CrossRef] [PubMed]
  37. A. Fang, T. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79, 241104 (2009). [CrossRef]
  38. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a SPASER-based nanolaser,” Nature 460, 1110-1112 (2009). [CrossRef] [PubMed]
  39. P. A. Belov, “Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis,” Microwave Opt. Technol. Lett. 37, 259-263 (2003). [CrossRef]
  40. V. A. Podolskiy, and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005). [CrossRef]
  41. V. A. Podolskiy, L. Alekseyev, and E. E. Narimanov, “Strongly anisotropic media: the THz perspectives of lefthanded materials,” J. Mod. Opt. 52, 2343-2349 (2005). [CrossRef]
  42. R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Nonmagnetic nanocomposites for optical and infrared negative-refraction-index media,” J. Opt. Soc. Am. B 23, 498-505 (2006). [CrossRef]
  43. L. V. Alekseyev and E. E. Narimanov, “Slow light and 3D imaging with non-magnetic negative index systems,” Opt. Express 14, 11184-11193 (2006). [CrossRef] [PubMed]
  44. A. Hoffman, L. Alekseyev, S. Howard, K. Franz, D. Wisserman, V. Podolskiy, E. Narimanov, D. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nature Mater. 6, 946-950 (2007). [CrossRef]
  45. A. J. Hoffman, V. A. Podolskiy, D. L. Sivco, and C. Gmachl, “Sub-diffraction negative and positive index modes in mid-infrared waveguides,” Opt. Express 16, 16404-16409 (2008). [CrossRef] [PubMed]
  46. A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F.-S. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys. 105, 122411 (2009). [CrossRef]
  47. X. Wang, D.-H. Kwon, D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91, 143122 (2007). [CrossRef]
  48. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009). [CrossRef]
  49. Y. Sivan, A. V. Kildishev, N. M. Litchinitser, I. C. Khoo, and V. M. Shalaev, “Nonlinear tuning in optical metamaterials,” presented at SPIE Optics & Photonics Conference, Liquid Crystals XIII, San Diego, California, August 2-6, 2009.
  50. M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Tunable transmission and bistability in left-handed band-gap structures,” Appl. Phys. Lett. 85, 1451-1453 (2004). [CrossRef]
  51. A. D. Boardman, P. Egan, L. Velasco, and N. King, “Control of planar nonlinear guided waves and spatial solitons with a left-handed medium,” J. Opt. A, Pure Appl. Opt. 7, S57-S67 (2005). [CrossRef]
  52. I. R. Gabitov, R. Indik, N. M. Litchinitser, A. I. Maimistov, V. M. Shalaev, and J. E. Soneson, “Double resonant optical materials with embedded metallic nanostructures,” J. Opt. Soc. Am. B 23, 535-542 (2006). [CrossRef]
  53. A. K. Popov, V. V. Slabko, and V. M. Shalaev, “Second harmonic generation in left-handed metamaterials,” Laser Phys. Lett. 3, 293-297 (2006). [CrossRef]
  54. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502-504 (2006). [CrossRef] [PubMed]
  55. M. Scalora, G. D'Aguanno, M. J. Bloemer, M. Centini, D. de Ceglia, N. Mattiucci, and Y. S. Kivshar, “Dynamics of short pulses and phase matched second harmonic generation in negative index materials,” Opt. Express 14, 4746-4756 (2006). [CrossRef] [PubMed]
  56. D. de Ceglia, A. D'Orazio, M. de Sario, V. Petruzzelli, F. Prudenzano, M. Centini, M. G. Cappeddu, M. J. Bloemer, and M. Scalora, “Enhancement and inhibition of second-harmonic generation and absorption in a negative index cavity,” Opt. Lett. 32, 265-267 (2007). [CrossRef] [PubMed]
  57. N. M. Litchinitser, I. R. Gabitov, and A. I. Maimistov, “Optical bistability in a nonlinear optical coupler with a negative index channel,” Phys. Rev. Lett. 99, 113902(4) (2007). [CrossRef]
  58. N. M. Litchinitser, I. R. Gabitov, A. I. Maimistov, and V. M. Shalaev, “Effect of an optical negative refractive index thin film on optical bistability,” Opt. Lett. 32, 151-153 (2007). [CrossRef]
  59. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15, 5238-5247 (2007). [CrossRef] [PubMed]
  60. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” erratum, Opt. Express 16, 8055 (2008). [CrossRef]
  61. E. Kim, F. Wang, W. Wu, Z. Yu, and Y. R. Shen, “Nonlinear optical spectroscopy of photonic metamaterials,” Phys. Rev. B 78, 113102(4) (2008). [CrossRef]
  62. A. I. Maimistov, I. R. Gabitov, and N. M. Litchinitser, “Solitary waves in a nonlinear oppositely directed coupler,” Opt. Spectrosc. 104, 253-257 (2008). [CrossRef]
  63. A. V. Kildishev, U. K. Chettiar, Z. Liu, V. M. Shalaev, D.-H. Kwon, Z. Bayraktar, and D. H. Werner, “Stochastic optimization of low-loss optical negative-index metamaterial,” J. Opt. Soc. Am. B 24, A34-A39 (2007). [CrossRef]
  64. D. T. Pham and D. Karaboga, Intelligent Optimization Techniques (Springer-Verlag, 2000). [CrossRef]
  65. R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms (Wiley-Interscience, 2004).
  66. J. Kennedy and R. C. Eberhart, Swarm Intelligence (Academic, 2001).
  67. A. V. Kildishev, Y. Sivan, N. M. Litchinitser, and V. M. Shalaev, “Frequency-domain modeling of scalar TM wave propagation in optical nanostructures with a third-order nonlinear response,” Opt. Lett. 34, 3364-3366 (2009). [CrossRef] [PubMed]
  68. A. V. Kildishev and N. M. Litchinitser, “Efficient simulation of non-linear effects in 2D optical nanostructures to TM waves,” Opt. Commun. Doi:10.1016/j.optcom.2009.09.039. [CrossRef]
  69. N. M. Litchinitser, A. I. Maimistov, I. R. Gabitov, R. Z. Sagdeev, and V. M. Shalaev, “Metamaterials: electromagnetic enhancement at zero-index transition,” Opt. Lett. 33, 2350-2352 (2008). [CrossRef] [PubMed]
  70. M. Dalarsson and P. Tassin, “Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material,” Opt. Express 17, 6747-6752 (2009). [CrossRef] [PubMed]
  71. K. Kim, D.-H. Lee, and H. Lim, “Resonant absorption and mode conversion in a transition layer between positive-index and negative-index media,” Opt. Express 16, 18505-18513 (2008). [CrossRef] [PubMed]
  72. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  73. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  74. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006). [CrossRef]
  75. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006). [CrossRef] [PubMed]
  76. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nature Photon. 1, 224-227 (2007). [CrossRef]
  77. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007). [CrossRef]
  78. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations,” Photonics Nanostruct. Fundam. Appl. 6, 87-95 (2008). [CrossRef]
  79. A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33, 43-45 (2008). [CrossRef]
  80. W. X. Jiang, T. J. Cui, X. Y. Zhou, X. M. Yang, and Q. Cheng, “Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials,” Phys. Rev. E 78, 066607 (2008). [CrossRef]
  81. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16, 11555-11567 (2008). [CrossRef] [PubMed]
  82. E. E. Narimanov and A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009). [CrossRef]
  83. Y. Lai, J. Ng, H. Y. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009). [CrossRef] [PubMed]
  84. A. V. Kildishev, W. Cai, U. K. Chettiar, and V. M. Shalaev, “Transformation optics: approaching broadband electromagnetic cloaking,” New J. Phys. 10, 115029 (2008). [CrossRef]
  85. L. S. Dolin, “On the possibility of comparison of three-dimensional electromagnetic systems with nonuniform anisotropic filling,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 4, 964-967 (1961).
  86. A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell's equations,” J. Mod. Opt. 43, 773-793 (1996). [CrossRef]
  87. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008). [CrossRef] [PubMed]
  88. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568-571 (2009). [CrossRef]
  89. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366-369 (2009). [CrossRef] [PubMed]
  90. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nature Photon. 3, 461-463 (2009). [CrossRef]
  91. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited