OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: B21–B27

Enhancement of Er 3 + upconverted luminescence in Er 3 + : Au-antimony glass dichroic nanocomposites containing hexagonal Au nanoparticles

Tirtha Som and Basudeb Karmakar  »View Author Affiliations


JOSA B, Vol. 26, Issue 12, pp. B21-B27 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000B21


View Full Text Article

Enhanced HTML    Acrobat PDF (611 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dichroic Er 3 + :Au-antimony glass nanocomposites are synthesized in a new reducing glass (dielectric) matrix (mol%) K 2 O B 2 O 3 Sb 2 O 3 (KBS) by a single-step melt-quench technique involving selective thermochemical reduction principle. Transmission electron microscopic images reveal hexagonal Au o nanoparticles having major axes about 9 23 nm . Dichroic behavior arises due to hexagonal Au o nanoparticles of aspect ratio 1.2–1.3. Au o nanoparticles of concentration of 0.03 wt % ( 4.1 × 10 18   atoms cm 3 ) drastically enhances the intensity (2–5 folds) of both 536 ( S 3 2 4 I 15 2 4 , green) and 645 ( F 9 2 4 I 15 2 4 , red) nm emission bands of Er 3 + . Local field enhancement induced by Au o surface plasmon resonance (SPR) and energy transfer from fluorescent Au o Er 3 + ions are found to be responsible for enhancement while, at very high Au concentration, energy transfer from Er 3 + Au o and optical reabsorption due to Au o SPR result in quenching.

© 2009 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(250.5230) Optoelectronics : Photoluminescence
(250.5403) Optoelectronics : Plasmonics

History
Original Manuscript: March 20, 2009
Manuscript Accepted: May 20, 2009
Published: June 23, 2009

Citation
Tirtha Som and Basudeb Karmakar, "Enhancement of Er3+ upconverted luminescence in Er3+: Au-antimony glass dichroic nanocomposites containing hexagonal Au nanoparticles," J. Opt. Soc. Am. B 26, B21-B27 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-12-B21


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Thermal analysis and optical properties of Yb3+/Er3+-codoped oxyfluoride germanate glasses,” J. Opt. Soc. Am. B 21, 951-957 (2004). [CrossRef]
  2. R. Balda, A. J. Garcia-Adeva, J. Fernández, and J. M. Fdez-Navarro, “Infrared-to-visible upconversion of Er3+ ions in GeO2-PbO-Nb2O5 glasses,” J. Opt. Soc. Am. B 21, 744-752 (2004). [CrossRef]
  3. L. R. P. Kassab, M. E. Fukumoto, and L. Gomes, “Energy transfer in PbO-Bi2O3-Ga2O3 glasses codoped with Yb3+ and Er3+,” J. Opt. Soc. Am. B 22, 1255-1259 (2005). [CrossRef]
  4. L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. de A Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys. 102, 103515 (2007). [CrossRef]
  5. L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+-Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94, 239-242 (2009). [CrossRef]
  6. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707-718 (2008). [CrossRef]
  7. C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc. 12, 121-129 (2002). [CrossRef]
  8. J. Zhang, W. Dong, J. Sheng, J. Zheng, J. Li, L. Qiao, and L. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310, 234-239 (2008). [CrossRef]
  9. H. Hofmeister, W. -G. Drost, and A. Berger, “Oriented prolate silver particles in glass-characteristics of novel dichroic polarizers,” Nanostruct. Mater. 12, 207-210 (1999). [CrossRef]
  10. P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126-130 (2006). [CrossRef]
  11. W. Vogel, Glass Chemistry (Springer-Verlag, 1992).
  12. T. Som and B. Karmakar, “Efficient green and red fluorescence upconversion in erbium-doped new low-phonon antimony glasses,” Opt. Mater. 31, 609-618 (2009). [CrossRef]
  13. CRC Handbook of Chemistry and Physics, 75th ed., D.R.Lide, ed. (CRC Press, 1975), pp. 8-34.
  14. B. D. Cullity, Elements of X-ray Diffraction, (Addison-Wesley, 1978) p. 102.
  15. W. Casei, “Optically anisotropic metal-polymer nanocomposites,” in Metal-Polymer Nanocomposites, L.Nicolais and G.Carotenuto, eds. (Wiley, 2005).
  16. Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: A new route toward polarization-dependent color filters,” Adv. Mater. 11, 223-227 (1999). [CrossRef]
  17. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aqua ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424-4442 (1968). [CrossRef]
  18. F. Gonella and P. Mazzoldi, “Metal nanocluster composite glasses,” in Handbook of Nanostructured Materials and Nanotechnology, Vol. 4, H.S.Nalwa, ed. (Academic, 2000). [CrossRef]
  19. K. -H. Su, Q. -H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003). [CrossRef]
  20. T. Ung, L. M. Liz-Marzán, and P. Mulvaney, “Optical properties of thin films of Au@SiO2 particles,” J. Phys. Chem. B 105, 3441-3452 (2001). [CrossRef]
  21. J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions II,” Philos. Trans. Roy. Soc. 205, 237-242 (1906). [CrossRef]
  22. H. Scholze, Glass: Nature, Structure, and Properties (Springer-Verlag, 1991).
  23. H. Liao, W. Wen, and G. K. Wong, “Photoluminescence from Au nanoparticles embedded in Au:oxide composite films,” J. Opt. Soc. Am. B 23, 2518-2521 (2006). [CrossRef]
  24. K. Terashima, T. Hashimoto, T. Uchino, S. -H. Kim, and T. Yoko, “Structure and nonlinear optical properties of Sb2O3-B2O3 binary glasses,” J. Ceram. Soc. Jpn. 104, 1008-1014 (1996). [CrossRef]
  25. J. Zhu, K. Zhu, and L. Chen, “Influence of gold nanoparticles on the upconversion fluorescence in Sm3+,” J. Non-Cryst. Solids 352, 150-154 (2006). [CrossRef]
  26. H. Nabika and S. Deki, “Enhancing and quenching functions of silver nanoparticles on the luminescent properties of europium complex in the solution phase,” J. Phys. Chem. B 107, 9161-9164 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited