OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: B39–B49

Generalized compensated bilayer structure from the transformation optics perspective

Wei Yan, Min Yan, and Min Qiu  »View Author Affiliations


JOSA B, Vol. 26, Issue 12, pp. B39-B49 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000B39


View Full Text Article

Enhanced HTML    Acrobat PDF (566 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A systematic study on a generalized compensated bilayer structure is presented based on transformation optics. A compensated bilayer can be constructed through a general transformation plus a coordinate inversion based on a single layer in the electromagnetic (EM) space. Two outer boundaries of the obtained bilayer are mapped from the same surface. Such a bilayer has an optically zero volume (nihility) regardless of the material composition in the original single layer. This fact directly leads to the property of invariant scattering. A bilayer is also able to transfer the EM field from one side to the other with a scaling factor, which is determined by how the two side boundaries are mapped. For a properly chosen background, it is possible to achieve perfect optical imaging. Extensive numerical examples are given to demonstrate these identified properties and applications. Our study provides a more complete understanding of this class of transformation media by considering general geometries and arbitrary material properties.

© 2009 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(230.3205) Optical devices : Invisibility cloaks
(290.5839) Scattering : Scattering, invisibility

History
Original Manuscript: August 3, 2009
Manuscript Accepted: August 12, 2009
Published: September 15, 2009

Citation
Wei Yan, Min Yan, and Min Qiu, "Generalized compensated bilayer structure from the transformation optics perspective," J. Opt. Soc. Am. B 26, B39-B49 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-12-B39


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  3. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323, 110-112 (2009). [CrossRef]
  4. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006). [CrossRef]
  5. U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” http://www.arXiv:0805.4778v2 [physics. optics], 2008.
  6. M. Yan, W. Yan, and M. Qiu, “Invisibility cloaking by coordinate transformation,” in Progress in Optics, Vol. 52, E.Wolf, ed. (Elsevier, 2008), Chap. 4.
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006). [CrossRef] [PubMed]
  8. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366-369 (2009). [CrossRef] [PubMed]
  9. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568-571 (2009). [CrossRef]
  10. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nature Photon. 3, 461-463 (2009). [CrossRef]
  11. J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17, 12922-12928 (2009). [CrossRef] [PubMed]
  12. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009). [CrossRef] [PubMed]
  13. Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nature Mater. 8, 639-642 (2009). [CrossRef]
  14. Z. C. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007). [CrossRef] [PubMed]
  15. H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007). [CrossRef] [PubMed]
  16. M. Yan, Z. C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Appl. Phys. Lett. 99, 233901 (2007). [CrossRef]
  17. Y. Lai, H. Y. Chen, Z. Q. Wang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009). [CrossRef] [PubMed]
  18. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008). [CrossRef] [PubMed]
  19. H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007). [CrossRef]
  20. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99, 183901 (2007). [CrossRef] [PubMed]
  21. T. Tyc and U. Leonhardt, “Transmutation of singularities in optical instruments,” New J. Phys. 10, 115038 (2008). [CrossRef]
  22. A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33, 43-45 (2008). [CrossRef]
  23. W. Yan, M. Yan, and M. Qiu, “Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens,” Phys. Rev. B 79, 161101 (2008). [CrossRef]
  24. M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78, 125113 (2008). [CrossRef]
  25. T. Yang, H. Y. Chen, X. D. Luo, and H. R. Ma, “Superscatterer: Enhancement of scattering with complementary media,” Opt. Express 16, 18545-18550 (2008). [CrossRef] [PubMed]
  26. Y. Luo, J. J. Zhang, H. S. Chen, B. I. Wu, L. X. Ran, and J. A. Kong, “Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect,” http://www.arXiv:0904.1463 [physics. optics], 2009.
  27. Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Wang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009). [CrossRef] [PubMed]
  28. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001). [CrossRef] [PubMed]
  29. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004). [CrossRef] [PubMed]
  30. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008). [CrossRef] [PubMed]
  31. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008). [CrossRef] [PubMed]
  32. J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys.: Condens. Matter 15, 6345-6364 (2003). [CrossRef]
  33. A. Lakhtakia, “On perfect lenses and nihility,” Int. J. Infrared Millim. Waves 23, 339-343 (2002). [CrossRef]
  34. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  35. D. R. Smith and S. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003). [CrossRef] [PubMed]
  36. J. B. Pendry, “Perfect cylindrical lenses,” Opt. Express 11, 750-760 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited