OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: B74–B82

On Dyakonov–Tamm waves localized to a central twist defect in a structurally chiral material

Jun Gao, Akhlesh Lakhtakia, and Mingkai Lei  »View Author Affiliations

JOSA B, Vol. 26, Issue 12, pp. B74-B82 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1330 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The boundary-value problem of the propagation of Dyakonov–Tamm waves localized to a central twist defect in a structurally chiral material was formulated and numerically solved. The angular magnitude of the twist defect and the orientation of the twist defect relative to the direction of propagation were varied. Detailed analysis showed that either two or three different Dyakonov–Tamm waves can propagate, depending on the angular magnitude and the orientation of the twist defect. These waves have different phase speeds and degrees of localization to the twist–defect interface. The most localized Dyakonov–Tamm waves are essentially confined to within two structural periods of the twist–defect interface on either side.

© 2009 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(240.6690) Optics at surfaces : Surface waves
(260.2110) Physical optics : Electromagnetic optics

Original Manuscript: July 17, 2009
Manuscript Accepted: August 24, 2009
Published: October 6, 2009

Jun Gao, Akhlesh Lakhtakia, and Mingkai Lei, "On Dyakonov-Tamm waves localized to a central twist defect in a structurally chiral material," J. Opt. Soc. Am. B 26, B74-B82 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).
  2. H. A. Macleod, Thin-film Optical Filters, 3rd ed. (Institute of Physics, 2001). [CrossRef]
  3. P. W. Baumeister, Optical Coating Technology (SPIE Press, 2004). [CrossRef]
  4. H. A. Haus and C. V. Shank, “Asymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532-539 (1976). [CrossRef]
  5. G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995-997 (1994). [CrossRef]
  6. I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997). [CrossRef]
  7. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).
  8. W. E. Haas, “Liquid crystal display research: the first fifteen years,” Mol. Cryst. Liq. Cryst. 94, 1-31 (1983). [CrossRef]
  9. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2005). [CrossRef]
  10. A. Lakhtakia, “Sculptured thin films: accomplishments and emerging uses,” Mater. Sci. Eng. C 19, 427-434 (2002). [CrossRef]
  11. I. Abdulhalim, L. Benguigui, and R. Weil, “Selective reflection by helicoidal liquid crystals, results of an exact calculation using the 4 × 4 characteristic matrix method,” J. Phys. 46, 815-825 (1985). [CrossRef]
  12. A. Lakhtakia and V. C. Venugopal, “On Bragg reflection by helicoidal bianisotropic mediums,” Arch. Elektr. Üebertrag. 53, 287-290 (1999).
  13. Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863-1868 (2000). [CrossRef]
  14. A. Lakhtakia, “Generation of spectral holes by inserting central structurally chiral layer defects in periodic structurally chiral materials,” Opt. Commun. 275, 283-287 (2007). [CrossRef]
  15. A. H. Gevorgyan and M. Z. Harutyunyan, “Chiral photonic crystals with an anisotropic defect layer,” Phys. Rev. E 76, 031701 (2007). [CrossRef]
  16. V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett. 89, 033901 (2002). [CrossRef] [PubMed]
  17. M. Becchi, S. Ponti, J. A. Reyes, and C. Oldano, “Defect modes in helical photonic crystals: an analytic approach,” Phys. Rev. B 70, 033103 (2004). [CrossRef]
  18. F. Wang and A. Lakhtakia, “Optical crossover phenomenon due to a central 90°-twist defect in a chiral sculptured thin film or chiral liquid crystal,” Proc. R. Soc. London Ser. A 461, 2985-3004 (2005). [CrossRef]
  19. I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, andM. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57-66 (2000). [CrossRef]
  20. A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33-46 (2001). [CrossRef]
  21. J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye-doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003). [CrossRef] [PubMed]
  22. J. Gao, A. Lakhtakia, J. A. Polo, Jr., and M. K. Lei, “Dyakonov-Tamm wave guided by a twist defect in a structurally chiral material,” J. Opt. Soc. Am. A 26, 1615-1621 (2009). Replace zn+/-+/-γ by ΠΩzn+/-+/-γ in Eq. . [CrossRef]
  23. A. Lakhtakia and J. A. Polo, Jr., “Dyakonov-Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” J. Eur. Opt. Soc. Rapid Publ. 2, 07021 (2007). [CrossRef]
  24. K. Agarwal, J. A. Polo, Jr., and A. Lakhtakia, “Theory of Dyakonov-Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material,” J. Opt. A 11, 074003 (2009). [CrossRef]
  25. M. I. D'yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714-716 (1988).
  26. N. S. Averkiev and M. I. Dyakonov, “Electromagnetic waves localized at the interface of transparent anisotropic media,” Opt. Spectrosc. 68, 653-655 (1990).
  27. D. B. Walker, E. N. Glytsis, and T. K. Gaylord, “Surface mode at isotropic-uniaxial and isotropic-biaxial interfaces,” J. Opt. Soc. Am. A 15, 248-260 (1998). [CrossRef]
  28. A. N. Darinskii, “Dispersionless polaritons on a twist boundary in optically uniaxial crystals,” Crystallogr. Rep. 46, 842-844 (2001). [CrossRef]
  29. J. A. Polo, Jr., S. Nelatury, and A. Lakhtakia, “Surface electromagnetic wave at a tilted uniaxial bicrystalline interface,” Electromagnetics 26, 629-642 (2006). [CrossRef]
  30. J. A. Polo, Jr., S. R. Nelatury, and A. Lakhtakia, “Propagation of surface waves at the planar interface of a columnar thin film and an isotropic substrate,” J. Nanophotonics 1, 013501 (2007). [CrossRef]
  31. J. A. Polo, Jr., S. R. Nelatury, and A. Lakhtakia, “Surface waves at a biaxial bicrystalline interface,” J. Opt. Soc. Am. A 24, 2974-2979 (2007). [CrossRef]
  32. A. M. Furs and L. M. Barkovsky, “Surface polaritons at the planar interface of twinned gyrotropic dielectric media,” Electromagnetics 28, 146-161 (2008). [CrossRef]
  33. S. R. Nelatury, J. A. Polo Jr., and A. Lakhtakia, “Electrical control of surface-wave propagation at the planar interface of a linear electro-optic material and an isotropic dielectric material,” Electromagnetics 28, 162-174 (2008). [CrossRef]
  34. I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Z. Phys. A 76, 849-850 (1932).
  35. H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of 'Tamm states' in superlattices,” Phys. Rev. Lett. 64, 2555-2558 (1990). [CrossRef] [PubMed]
  36. J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A 8, 630-638 (2006). [CrossRef]
  37. A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006). [CrossRef]
  38. A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, and A. B. Granovsky, “Controllable Tamm states in magnetophotonic crystal,” Physica B 394, 277-280 (2007). [CrossRef]
  39. O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics 28, 126-145 (2008). [CrossRef]
  40. S. R. Nelatury, J. A. Polo Jr., and A. Lakhtakia, “On widening the angular existence domain for Dyakonov surface waves using the Pockels effect,” Microwave Opt. Technol. Lett. 50, 2360-2362 (2008). [CrossRef]
  41. O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009). [CrossRef] [PubMed]
  42. L. Torner, J. P. Torres, and D. Mihalache, “New type of guided waves in birefringent media,” IEEE Photonics Technol. Lett. 5, 201-203 (1993). [CrossRef]
  43. L. Torner, J. P. Torres, C. Ojeda, and D. Mihalache, “Hybrid waves guided by ultrathin films,” J. Lightwave Technol. 13, 2027-2033 (1995). [CrossRef]
  44. L.-C. Crasovan, D. Artigas, D. Mihalache, and L. Torner, “Optical Dyakonov surface waves at magnetic interfaces,” Opt. Lett. 30, 3075-3077 (2005). [CrossRef] [PubMed]
  45. H. C. Chen, Theory of Electromagnetic Waves--A Coordinate-free Approach (McGraw-Hill, 1983).
  46. A. Lakhtakia and W. S. Weiglhofer, “Further results on light propagation in helicoidal bianisotropic mediums: oblique propagation,” Proc. R. Soc. London Ser. A 453, 93-105 (1997). [CrossRef]
  47. V. C. Venugopal and A. Lakhtakia, “Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums,” Proc. R. Soc. London Ser. A 456, 125-161 (2000). [CrossRef]
  48. M. Schubert and C. M. Herzinger, “Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films,” Phys. Status Solidi A 188, 1563-1575 (2001). [CrossRef]
  49. J. A. Polo, Jr. and A. Lakhtakia, “Comparison of two methods for oblique propagation in helicoidal bianisotropic mediums,” Opt. Commun. 230, 369-386 (2004). [CrossRef]
  50. Y. Jaluria, Computer Methods for Engineering (Brunner-Routledge, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited