OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: B96–B101

Steering polarization of infrared light through hybridization effect in a tri-rod structure

Jingxiao Cao, Hui Liu, Tao Li, Shuming Wang, Tianqi Li, Shining Zhu, and Xiang Zhang  »View Author Affiliations


JOSA B, Vol. 26, Issue 12, pp. B96-B101 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000B96


View Full Text Article

Enhanced HTML    Acrobat PDF (631 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A tri-rod structure (TRS), which can be seen as a combination of the double-rod structures reported by V. M. Shalaev et al. [ Opt. Lett. 30, 3356 (2005) ], is proposed to control the polarization state of an electromagnetic (EM) wave in the near-infrared range. When a plane EM wave propagates through the TRS system, two orthogonal hybrid magnetic eigenmodes are established as a result of the strong hybridization effect. Thus, linearly polarized infrared light is shown to change its polarization around the resonance range after passing through an array of TRSs. The wavelength dependence of the polarization state is also calculated, and various polarized waves can be obtained. A metamaterial made of a large number of TRSs could be utilized as a polarization controllable medium with possible applications in optical elements and devices.

© 2009 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

History
Original Manuscript: July 20, 2009
Revised Manuscript: September 1, 2009
Manuscript Accepted: September 3, 2009
Published: October 13, 2009

Citation
Jingxiao Cao, Hui Liu, Tao Li, Shuming Wang, Tianqi Li, Shining Zhu, and Xiang Zhang, "Steering polarization of infrared light through hybridization effect in a tri-rod structure," J. Opt. Soc. Am. B 26, B96-B101 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-12-B96


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  2. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  3. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  4. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351-1353 (2004). [CrossRef] [PubMed]
  5. N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, Th. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348-1350 (2005). [CrossRef] [PubMed]
  6. C. Enkich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005). [CrossRef]
  7. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005). [CrossRef] [PubMed]
  8. A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005). [CrossRef] [PubMed]
  9. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 17-20 (2005). [CrossRef]
  10. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006). [CrossRef]
  11. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155-11163 (2006). [CrossRef] [PubMed]
  12. F. M. Wang, H. Liu, T. Li, S. N. Zhu, and X. Zhang, “Omnidirectional negative refraction with wide bandwidth introduced by magnetic coupling in a tri-rod structure,” Phys. Rev. B 76, 075110 (2007). [CrossRef]
  13. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007). [CrossRef]
  14. Na Liu, Hui Liu, Shining Zhu, and Harald Giessen, “Stereometamaterials,” Nature Photon. 3, 157-162 (2009). [CrossRef]
  15. A. Alu, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express 14, 1557-1567 (2006). [CrossRef] [PubMed]
  16. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  17. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004). [CrossRef] [PubMed]
  18. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006). [CrossRef]
  19. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47-49 (2007). [CrossRef] [PubMed]
  20. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005). [CrossRef] [PubMed]
  21. Z. M. Zhang and C. J. Fu, “Unusual photon tunneling in the presence of a layer with a negative refractive index,” Appl. Phys. Lett. 80, 1097 (2002). [CrossRef]
  22. K.-Y. Kim, “Photon tunneling in composite layers of negative- and positive-index media,” Phys. Rev. E 70, 047603 (2004). [CrossRef]
  23. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Star, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006). [CrossRef] [PubMed]
  24. T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008). [CrossRef]
  25. T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008). [CrossRef]
  26. M. Berute, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103, 053102 (2008). [CrossRef]
  27. J. Hao, Yuan Yu, L. Ran, Jiang Tao, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007). [CrossRef] [PubMed]
  28. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  29. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited