OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 2 — Feb. 1, 2009
  • pp: 308–317

Impact of phase aberrations caused by multilayer optical data storage in weakly inhomogeneous media

Robert R. McLeod  »View Author Affiliations

JOSA B, Vol. 26, Issue 2, pp. 308-317 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (762 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Various multilayer optical data storage methods have been proposed in which bits are written in an initially homogeneous material. To varying degrees, all of these methods will be constrained by phase aberrations that decrease the Strehl ratio as the number of layers and index perturbation of each bit are increased. Although the exact problem is theoretically and numerically intractable, statistical derivations of the impact are possible. These analytic expressions are derived and validated with simulations of low-capacity disks, and then are used to establish limits in the interesting high-capacity case. The resulting approximate expressions are shown to be remarkably simple and also potentially serious in limiting multilayer data storage capacities.

© 2009 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(210.2860) Optical data storage : Holographic and volume memories
(210.4590) Optical data storage : Optical disks

ToC Category:
Optical Data Storage

Original Manuscript: August 26, 2008
Revised Manuscript: October 27, 2008
Manuscript Accepted: November 20, 2008
Published: January 27, 2009

Robert R. McLeod, "Impact of phase aberrations caused by multilayer optical data storage in weakly inhomogeneous media," J. Opt. Soc. Am. B 26, 308-317 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Mansuripur, The Physical Principles of Magneto-optical Recording (Cambridge U. Press, 1995), pp. 675-676.
  2. T. R. M. Sales and G. M. Morris, “Fundamental limits of optical superresolution,” Opt. Lett. 22, 582-584 (1997). [CrossRef] [PubMed]
  3. A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H.-J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515-1520 (1999). [CrossRef]
  4. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388-390 (1994). [CrossRef]
  5. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, Berlin, 2000).
  6. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393-400 (1963). [CrossRef]
  7. E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303-1311 (1966). [CrossRef] [PubMed]
  8. K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, and T. C. Strand, “Multilevel volumetric optical disk storage,” in Optical Data Storage, Proc. SPIE 2338, 247-250 (1994).
  9. W. I. Imaino, H. J. Rosen, K. A. Rubin, and T. S. Strand, “Extending the compact disk format to high capacity for video applications,” in Optical Data Storage, Proc. SPIE 2338, 254-258 (1994).
  10. H. J. Rosen, K. A. Rubin, W. C. Tang, and W. I. Imaino, “Multilayer optical recording (MORE),” in Optical Data Storage 1995, Proc. SPIE 2514, 14-19 (1995).
  11. G. W. Burr, “Three-dimensional optical storage,” Proc. SPIE 5225, 78-92 (2003). [CrossRef]
  12. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “3D Direct-write lithography into photopolymer,” Appl. Opt. 46, 295-301 (2007). [CrossRef] [PubMed]
  13. J. H. Strickler and W. W. Webb, “Three-dimensional optical data storage in refractive two-photon point excitation,” Opt. Lett. 16, 1780-1783 (1991). [CrossRef] [PubMed]
  14. H. Zhang, A. S. Dvornikov, E. P. Walker, N. H. Kim, and F. B. McCormick, “Single-beam two-photon-recorded monolithic multi-layer optical disks,” Proc. SPIE 4090, 174-178 (2000). [CrossRef]
  15. Y. Kawata and S. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. (Washington, D.C.) 100, 1777-1788 (2000). [CrossRef]
  16. M. S. Akselrod, S. S. Orlov, and G. M. Akselrod, “Bit-wise volumetric optical memory utilizing two-photon absorption in aluminum oxide medium,” Jpn. J. Appl. Phys., Part 1 43, 4908-4911 (2004). [CrossRef]
  17. J. H. Strickler and W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780-1782 (1991). [CrossRef] [PubMed]
  18. The e−2 diameter of a two-photon feature at twice the wavelength is larger by a factor of 2, while the full-width half-max depth extent increases by a factor of 221/2−1.
  19. A. Toriumi, S. Kawata, and M. Gu, “Reflection confocal microscope readout system for three-dimensional photochromic optical data storage,” Opt. Lett. 23, 1924-1926 (1998). [CrossRef]
  20. D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843-845 (1989). [CrossRef] [PubMed]
  21. R. Hagen and T. Bieringer, “Photoaddressable polymers for optical data storage,” Adv. Mater. (Weinheim, Ger.) 13, 1805-1810 (2001). [CrossRef]
  22. M. M. Wang and S. C. Esener, “Three-dimensional optical data storage in a fluorescent dye-doped photopolymer,” Appl. Opt. 39, 1826-1834 (2000). [CrossRef]
  23. E. Walker, A. Dvornikov, K. Coblentz, and P. Rentzepis, “Terabyte recorded in two-photon 3D disk,” Appl. Opt. 47, 4133-4139 (2008). [CrossRef] [PubMed]
  24. E. Walker and P. Rentzepis, “Two-photon technology: A new dimension,” Nat. Photonics 2, 406-408 (2008). [CrossRef]
  25. W. J. Gambogi, A. M. Weber, and T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” Proc. SPIE 2043, 2-13 (1993).
  26. D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141 (1996). [CrossRef]
  27. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487-489 (1999). [CrossRef]
  28. Y. Kawata, H. Ueki, Y. Hashimoto, and S. Kawata, “Three-dimensional optical memory with a photorefractive crystal,” Appl. Opt. 34, 4105-4110 (1995). [CrossRef] [PubMed]
  29. D. Day, M. Gu, and A. Smallridge, “Use of two-photon excitation for erasable-rewritable three-dimensional bit optical data storage in a photorefractive polymer,” Opt. Lett. 24, 948-950 (1999). [CrossRef]
  30. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023-2025 (1996). [CrossRef] [PubMed]
  31. F. Guattari, G. Maire, K. Contreras, C. Arnaud, G. Pauliat, G. Roosen, S. Jradi, and C. Carré, “Balanced homodyne detection of Bragg microholograms in photopolymer for data storage,” Opt. Express 15, 2234-2243 (2007). [CrossRef] [PubMed]
  32. H. Mikami, T. Shimano, H. Kudo, J. Hashizume, and H. Miyamoto, “Readout-signal amplification by homodyne detection scheme,” Proc. SPIE 6620, 662005 (2007). [CrossRef]
  33. D. H. Pontius, “Confocal optical microscopy system for multi-level data storage and retrieval,” U.S. patent 5619371 (8 April 1997).
  34. Y. Kawata, R. Jusiexclkaitis, T. Tanaka, T. Wilson, and S. Kawata, “Differential phase-contrast microscope with a split detector for the readout system of a multilayered optical memory,” Appl. Opt. 35, 2466-2470 (1996). [CrossRef] [PubMed]
  35. T. Wilson, Y. Kawata, and S. Kawata, “Readout of three-dimensional optical memories,” Opt. Lett. 21, 1003-1005 (1996). [CrossRef] [PubMed]
  36. S. Homan and A. E. Wilner, “High-capacity optical storage using multiple wavelengths, multiple layers and volume holograms,” Electron. Lett. 31, 621-623 (1995). [CrossRef]
  37. H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4, 840-848 (1998). [CrossRef]
  38. S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3, 72-81 (2001). [CrossRef]
  39. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Micro-holographic multi-layer optical disk data storage,” Appl. Opt. 44, 3197-3207 (2005). [CrossRef] [PubMed]
  40. M. Dubois, X. Shi, C. Erben, K.-L. Longley, E.-P. Boden, and B.-L. Lawrence, “Characterization of microholograms recorded in a thermoplastic medium for three-dimensional optical data storage,” Opt. Lett. 30, 1947-1949 (2005). [CrossRef] [PubMed]
  41. I. S. Steinberg, “Multilayer recording of the microholograms in lithium niobate,” in Photorefractive Effects, Materials and Devices, OSA Trends in Optics and Photonics Series, Vol. 99 (Optical Society of America, 2005), pp. 610-615.
  42. K. Saito, T. Horigome, H. Miyamoto, H. Yamatsu, N. Tanabe, K. Hayashi, G. Fujita, S. Kobayashi, T. Kudo, and H. Uchiyama, “Drive system and readout characteristics of micro-reflector optical disc,” in Int. Soc. Opt. Eng., Proc. SPIE 6620, 66200B (2007). [CrossRef]
  43. Y. Zhang, T. D. Milster, J. Butz, W. Bletcher, K. J. Erwin, and E. Walker, “Signal, cross talk and signal to noise ratio in bit-wise volumetric optical data storage,” in 2002 International Symposium on Optical Memory and Optical Data Storage Topical Meeting (IEEE, 2002), pp. 246-248. [CrossRef]
  44. Z. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lorincz, “Modeling of multilayer microholographic data storage,” Appl. Opt. 46, 753-761 (2007). [CrossRef] [PubMed]
  45. T. Tanaka and S. Kawata, “Comparison of recording densities in three-dimensional optical storage systems: multilayered bit recording versus angularly multiplexed holographic recording,” J. Opt. Soc. Am. A 13, 935-943 (1996). [CrossRef]
  46. W. J. Smith, Modern Optical Engineering, Second Ed. (McGraw Hill, 1990), p. 336.
  47. G. Odian, Principals of Polymerization, Fourth Ed. (Wiley-Interscience, 2004), Ch. 3, p. 222.
  48. B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics,” in Wiley Series in Pure and Applied Optics (2009), Ch. 3.
  49. idib., Ch. 1.
  50. B. M. King and M. A. Neifeld, “Sparse modulation coding for increased capacity in volume holographic storage,” Appl. Opt. 39, 6681-6688 (2000). [CrossRef]
  51. A. Daiber, R. McLeod, and R. Snyder, U.S. patent 6,549,664, “Sparse modulation codes for holographic data storage,” (15 April 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited