OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 2 — Feb. 1, 2009
  • pp: 318–327

Experimental characterization of high-speed 1.55 μ m buried heterostructure In Ga As P In Ga Al As quantum-well lasers

M. Nadeem Akram, O. Kjebon, M. Chacinski, R. Schatz, J. Berggren, F. Olsson, S. Lourdudoss, and A. Berrier  »View Author Affiliations

JOSA B, Vol. 26, Issue 2, pp. 318-327 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (591 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Detailed experimental characterization is performed for 1550 nm semi-insulating regrown buried heterostructure Fabry–Perot (FP) lasers having 20 In Ga As P In Ga Al As strain-balanced quantum wells (QWs) in the active region. Light-current-voltage performance, electrical impedance, small-signal response below and above threshold, amplified spontaneous emission spectrum below threshold and relative intensity noise spectrum are measured. Different laser parameters such as external differential quantum efficiency η d , background optical loss α i , K-factor, D-factor, characteristic temperature T 0 , differential gain d g d n , gain-compression factor ϵ, carrier density versus current, differential carrier lifetime τ d , optical gain spectrum below threshold, and chirp parameter α are extracted from these measurements. The FP lasers exhibited a high T 0 ( 78 86.5 ° C ) and very high-resonance frequency ( 23.7 GHz ) . The results indicate that appropriately designed lasers having a large number of InGaAsP well/InGaAlAs barrier QWs with shallow valence-band discontinuity can be useful for uncooled high-speed direct-modulated laser applications.

© 2009 Optical Society of America

OCIS Codes
(250.5960) Optoelectronics : Semiconductor lasers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: September 30, 2008
Revised Manuscript: October 27, 2008
Manuscript Accepted: November 2, 2008
Published: January 27, 2009

M. Nadeem Akram, O. Kjebon, M. Chacinski, R. Schatz, J. Berggren, F. Olsson, S. Lourdudoss, and A. Berrier, "Experimental characterization of high-speed 1.55 μm buried heterostructure InGaAsP/InGaAlAs quantum-well lasers," J. Opt. Soc. Am. B 26, 318-327 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. S. L. Backbom, “30 Ghz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33, 488-489 (1997). [CrossRef]
  2. O. Kjebon, M. N. Akram, and R. Schatz, “40 Gb/s transmission experiment using directly modulated 1.55 μm DBR lasers,” in Indium Phosphide and Related Materials (IEEE, 2003), pp. 495-498.
  3. Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photon. Technol. Lett. 9, 25-27 (1997). [CrossRef]
  4. Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers,” IEEE J. Quantum Electron. 34, 1970-1978 (1998). [CrossRef]
  5. Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Novel design scheme for high-speed MQW lasers with enhanced differential gain and reduced carrier transport effect,” IEEE J. Quantum Electron. 34, 2340-2349 (1998). [CrossRef]
  6. M. N. Akram, C. Silfvenius, O. Kjebon, and R. Schatz, “Design optimization of InGaAsP-InGaAlAs 1.55 μm strain compensated MQW lasers for direct modulation applications,” Semicond. Sci. Technol. 19, 615-625 (2004). [CrossRef]
  7. L. A. Coldren and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” in Microwave and Optical Engineering (Wiley, 1995).
  8. J. Piprek, P. Abraham, and J. E. Bowers, “Carrier non-uniformity effects on the internal efficiency of multiquantum well laser,” Appl. Phys. Lett. 74, 489-491 (1999). [CrossRef]
  9. C. Silfvenius, G. Landgren, and S. Marcinkevicius, “Hole distribution in InGaAsP 1.3 μm multiple quantum well laser structures with different hole confinement energies,” IEEE J. Quantum Electron. 35, 603-607 (1999). [CrossRef]
  10. M. A. Alam, M. H. Hybertsen, R. K. Smith, and G. A. Baraff, “Simulation of semiconductor quantum well lasers,” IEEE Trans. Electron Devices 47, 1917-1925 (2000). [CrossRef]
  11. K. Fröjdh and S. Marcinkevicius, “Interwell carrier transport in InGaAsP multiple quantum well laser structures,” Appl. Phys. Lett. 69, 3695-3697 (1996). [CrossRef]
  12. M. N. Akram, O. Kjebon, S. Marcinkevicius, R. Schatz, J. Berggren, F. Olsson, and S. Lourdudoss, “The effect of barrier composition on the vertical carrier transport and lasing properties of 1.55 μm multiple quantum well structures,” IEEE J. Quantum Electron. 42, 713-724 (2006). [CrossRef]
  13. T. Ishikawa and J. E. Bowers, “Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained layer quantum well,” IEEE J. Quantum Electron. 30, 562-570 (1994). [CrossRef]
  14. C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μmAl(x)Ga(y)In(1-x-y)As/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994). [CrossRef]
  15. S. H. Park, “Barrier height effects on lasing characteristics of InGaAs/InGaAlAs strained quantum well lasers,” J. Korean Phys. Soc. 32, 713-717 (1998).
  16. J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1−xGaxAsyP1−y and In1−x−yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771-782 (1999). [CrossRef]
  17. M. N. Akram, O. Kjebon, M. Chacinski, R. Schatz, J. Berggren, F. Olsson, S. Lourdudoss, and A. Berrier, “High speed performance of 1.55 μm buried hetero-structure lasers with 20 InGaAsP/InGaAlAs quantum wells,” in European Conference on Optical Communication, Vol. 1 (2006), pp. 35-36.
  18. B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double heterostructure injection lasers,” J. Appl. Phys. 46, 3096-3099 (1975). [CrossRef]
  19. C.-S. Chang, S. L. Chuang, J. R. Minch, W. W. Fang, Y. K. Chen, and T. Tanbun-Ek, “Amplified spontaneous emission spectroscopy in strained quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 1100-1107 (1995). [CrossRef]
  20. J. Nilsson, “Measurement of wavelength and current dependence of gain, refractive index and internal loss in semiconductor lasers,” Tech. Rep. (Royal Institute of Technology, IMIT Department, Stockholm 16440, Sweden, 1996).
  21. E. Berglind and L. Gillner, “Optical quantum noise treated with classical electrical network theory,” IEEE J. Quantum Electron. 30, 846-853 (1994). [CrossRef]
  22. O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. Stålnacke, “Modulation response measurements and evaluation of MQW InGaAsP lasers of various designs,” High Speed Semiconductor Laser Sources 2684, 138-152 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited