OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 2 — Feb. 1, 2009
  • pp: 337–345

Modeling of microstructured nonzero dispersion shifted optical fiber with ultralow dispersion slope

Debashri Ghosh, Samudra Roy, Mrinmay Pal, Somnath Bandyopadhyay, and Shyamal Bhadra  »View Author Affiliations


JOSA B, Vol. 26, Issue 2, pp. 337-345 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000337


View Full Text Article

Enhanced HTML    Acrobat PDF (746 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a model of microstructured nonzero dispersion shifted fiber (NZ-DSF) suitable for use in a future wavelength division multiplexing (WDM) system with more enhanced performance characteristics than conventional NZ-DSFs. A microstructured fiber has been chosen because of the flexibility in tailoring its dispersion properties, which helps to attain various desired configurations unachievable in conventional fibers. The refractive index profile has been modeled semi-analytically as well as numerically. The single mode fiber design is optimized for low dispersion, ultralow dispersion slope, and low confinement loss at 1550 nm . A large mode area minimizes nonlinearities and facilitates its operation over the entire S, C, and L bands. The optimized dispersion slope has the lowest value among the reported results for conventional NZ-DSFs.

© 2009 Optical Society of America

OCIS Codes
(260.2030) Physical optics : Dispersion
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 22, 2008
Revised Manuscript: November 19, 2008
Manuscript Accepted: November 21, 2008
Published: January 28, 2009

Citation
Debashri Ghosh, Samudra Roy, Mrinmay Pal, Somnath Bandyopadhyay, and Shyamal Bhadra, "Modeling of microstructured nonzero dispersion shifted optical fiber with ultralow dispersion slope," J. Opt. Soc. Am. B 26, 337-345 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-2-337


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Kato, M. Hirano, A. Tada, K. Fukuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, “Dispersion flattened transmission line consisting of wide band non-zero dispersion shifted fiber and dispersion compensating fiber module,” Opt. Fiber Technol. 8, 231-239 (2002). [CrossRef]
  2. R. K. Varshney, A. K. Ghatak, I. C. Goyal, and C. S. Antony, “Design of a flat field fiber with very small dispersion slope,” Opt. Fiber Technol. 9, 189-198 (2003). [CrossRef]
  3. N. Kumano, K. Mukasa, M. Sakano, and H. Moridaira, “Development of a non-zero dispersion-shifted fiber with ultra-low dispersion slope,” Furukawa Rev. 22, 1-6 (2002).
  4. K. Ohsono, T. Nishio, Y. Bing, T. Shirosawa, and T. Sukegawa, “High performance optical fibers for next generation transmission systems,” Hitachi Cable Rev. 22, 1-5 (2003).
  5. L. Gruner-Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L. V. Jorgensen, B. Edvold, B. Palsdottir, and D. Jakobsen, “Dispersion-compensating fibers,” J. Lightwave Technol. 23, 3566-3579 (2005). [CrossRef]
  6. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  7. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, 2005). [CrossRef]
  8. J. C. Knight, “Photonic crystal fibers and fiber lasers,” J. Opt. Soc. Am. B 24, 1661-1668 (2007). [CrossRef]
  9. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  10. W. H. Reeves, J. C. Knight, P. St. J. Russell, and P. J. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10, 609-613 (2002). [PubMed]
  11. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28, 989-991 (2003). [CrossRef] [PubMed]
  12. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843-852 (2003). [CrossRef] [PubMed]
  13. K. P. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express 11, 1503-1509 (2003). [CrossRef] [PubMed]
  14. F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065-1067 (2004). [CrossRef]
  15. Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327-332 (2004). [CrossRef]
  16. T. Wu and C. Chao, “A novel ultra-flattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 67-69 (2005). [CrossRef]
  17. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13, 3728-3736 (2005). [CrossRef] [PubMed]
  18. T. Matsui, J. Zhou, K. Nakajima, and I. Sankawa, “Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss,” J. Lightwave Technol. 23, 4178-4183 (2005). [CrossRef]
  19. H. Ademgil and S. Haxha, “Highly birefringent photonic crystal fibers with ultra-low chromatic dispersion and low confinement losses,” J. Lightwave Technol. 26, 441-448 (2008). [CrossRef]
  20. P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005). [CrossRef]
  21. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  22. M. Koshiba, “Full-vector analysis of photonic crystal fibers using the finite element method,” IEICE Trans. Electron. E85-C, 881-888 (2002).
  23. M. Midrio, M. P. Singh, and C. G. Someda, “The space filling mode of holey fibers: an analytical vectorial solution,” J. Lightwave Technol. 18, 1031-1037 (2000). [CrossRef]
  24. Y. Li, C. Wang, and M. Hu, “A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation.” Opt. Commun. 238, 29-33 (2004). [CrossRef]
  25. Y. Li, C. Wang, Y. Chen, M. Hu, B. Liu, and L. Chai, “Solution of the fundamental space-filling mode of photonic crystal fibers: numerical method versus analytical approaches,” Appl. Phys. B 85, 597-601 (2006). [CrossRef]
  26. Y. Li, C. Wang, Z. Wang, M. Hu, and L. Chai, “Analytical solution of the fundamental space filling mode of photonic crystal fibers,” Opt. Laser Technol. 39, 322-326 (2007). [CrossRef]
  27. R. K. Sinha and A. D. Varshney, “Dispersion properties of photonic crystal fiber: comparison by scalar and fully vectorial effective index methods,” Opt. Quantum Electron. 37, 711-722 (2005). [CrossRef]
  28. A. Ferrando, E. Silvestre, P. Andres, J. J. Miret, and M. V. Andres, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9, 687-697 (2001). [CrossRef] [PubMed]
  29. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790-792 (2000). [CrossRef]
  30. M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theories to holey fibers,” Opt. Lett. 29, 1739-1741 (2004). [CrossRef] [PubMed]
  31. K. Saitoh and M. Koshiba, “Emperical relations for simple design of photonic crystal fibers,” Opt. Express 13, 267-274 (2005). [CrossRef] [PubMed]
  32. K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightwave Technol. 23, 3580-3590 (2005). [CrossRef]
  33. B. T. Kuhlmey, R. C. McPhedran, and C. Martijn de Sterke, “Modal cut-off in microstructured optical fibers,” Opt. Lett. 27, 1684-1686 (2002). [CrossRef]
  34. G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett. 30, 1264-1266 (2005). [CrossRef] [PubMed]
  35. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26, 1660-1662 (2001). [CrossRef]
  36. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10, 1314-1319 (2002). [PubMed]
  37. A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited