OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 3 — Mar. 1, 2009
  • pp: 371–383

Effective characterization of the phase and intensity profiles of asymmetrically distorted light pulses in optical fiber systems

J. Atangana, A. Kamagate, P. Tchofo Dinda, A. Labruyère, and T. C. Kofane  »View Author Affiliations

JOSA B, Vol. 26, Issue 3, pp. 371-383 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (391 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We address the problem of characterization of light pulses that propagate in long-haul high-bit-rate optical communication systems under strongly perturbed conditions. We show that the conventional technique for characterization of the phase and intensity profile of such pulses becomes qualitatively inconsistent when the pulse’s profile is asymmetrically distorted with respect to its center of mass. We resolve these inconsistencies by partially reformulating the conventional technique by means of appropriate pulse parameters, which we call upgraded parameters, that allow a fair characterization of the intensity and phase of all types of light pulses, including those that are asymmetrically distorted. We illustrate the effectiveness of the upgraded parameters by applying them to a meticulous characterization of light pulses in a dispersion-managed optical fiber system in which third-order dispersion is acting as a strong perturbation.

© 2009 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4510) Fiber optics and optical communications : Optical communications
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 7, 2008
Revised Manuscript: December 8, 2008
Manuscript Accepted: December 9, 2008
Published: February 4, 2009

J. Atangana, A. Kamagate, P. Tchofo Dinda, A. Labruyère, and T. C. Kofane, "Effective characterization of the phase and intensity profiles of asymmetrically distorted light pulses in optical fiber systems," J. Opt. Soc. Am. B 26, 371-383 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ackaert, P. Demeester, P. Lagasse, Ch. Politi, M. Omahony, T. Berg, B. Tromborg, J. Sanitair, E. Patzak, S. Rao, P. Vogel, Ch. Minot, and D. Erasme, “European 1st-programme ROADMAP for optical communications,” Ann. Telecommun. 58, 1550-1585 (2003).
  2. V. E. Zakharov and S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives (Springer-Verlag, 1998).
  3. S. Bigo, Y. Frignac, J. C. Antona, and G. Charlet, “Design of multiterabit/s terrestrial transmission systems facilitated by simple analytical tools,” Ann. Telecommun. 58, 1757-1784 (2003).
  4. P. Tchofo Dinda, A. Labruyere, K. Nakkeeran, J. Fatome, A. B. Moubissi, S. Pitois, and G. Millot, “On the designing of densely dispersion-managed optical fiber systems for ultra-fast optical communication,” Ann. Telecommun. 58, 1785-1808 (2003).
  5. F. Matera, V. Eramo, A. Schiffini, M. Guglielmucci, and M. Settembre, “Numerical investigation on design of wide geographical optical-transport networks based on N×40-Gb/s transmission,” J. Lightwave Technol. 21, 456-465 (2003). [CrossRef]
  6. L. J. Richardson, W. Forysiak, and N. J. Doran, “Trans-oceanic 160-Gbit/s single-channel transmission using short-period dispersion management,” IEEE Photon. Technol. Lett. 13, 209-211 (2001). [CrossRef]
  7. J. Fatome, S. Pitois, P. Tchofo Dinda, and G. Millot, “Experimental demonstration of 160-GHz densely dispersion-managed soliton transmission in a single channel over 896 km of commercial fibres,” Opt. Express 11, 1553-1558 (2003). [CrossRef] [PubMed]
  8. A. Gray, Z. Huang, Y. W. A. Lee, I. Y. Khrushchevand, and I. Bennion, “Experimental observation of autosoliton propagation in a dispersion-managed system guided by nonlinear optical loop mirrors,” Opt. Lett. 29, 926-928 (2004). [CrossRef] [PubMed]
  9. M. Funabashi, Z. Zhu, Z. Pan, B. Xian, L. Paraschis, D. L. Harris, and S. J. B. Yoo, “Cascadability of optical 3R regeneration for NRZ format investigated in recirculating loop transmission over field fibers,” IEEE Photon. Technol. Lett. 18, 2081-083 (2006). [CrossRef]
  10. H. Masuda, H. Kawakami, S. Kuwahara, A. Hirano, K. Sato, and Y. Miyamoto, “1.28 Tbit/s(32×43 Gbit/s) field trial over 528 km(6×88 km) DSF using L-band remotely-pumped EDFA/distributed Raman hybrid inline amplifiers,” Electron. Lett. 39, 1668-1670 (2003). [CrossRef]
  11. D. Z. Chen, T. J. Xia, G. Wellbrock, P. Mamyshev, S. Penticost, G. Grosso, A. Puc, P. Perrier, and H. Fevrier, “New field trial distance record of 3040 km on wide reach WDM with 10 and 40 Gb/s transmission including OC-768 traffic without regeneration,” J. Lightwave Technol. 25, 28-37 (2007). [CrossRef]
  12. S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Shairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690-691 (2004). [CrossRef]
  13. S. Boscolo, S. K. Turitsyn, and K. J. Blow, “All optical passive 2R regeneration for N×40 Gbit/s WDM transmission using NOLM and novel filtering technique,” Opt. Commun. 217, 227-232 (2003). [CrossRef]
  14. J. C. Simon, L. Bramerie, F. Ginovart, V. Roncin, M. Gay, S. Feve, E. Le Cren, and M. L. Chares, “All-optical regeneration techniques,” Ann. Telecommun. 58, 1708-1724 (2003).
  15. A. Labruyere and P. Tchofo Dinda, “Analytical design of nonlinear optical loop mirrors for fiber-optic communication systems,” Opt. Commun. 266, 676-680 (2006). [CrossRef]
  16. T. I. Lakoba and G. P. Agrawal, “Effects of third-order dispersion on dispersion-managed solitons,” J. Opt. Soc. Am. B 16, 1332-1343 (1999). [CrossRef]
  17. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  18. P. Tchofo Dinda, A. B. Moubissi, and K. Nakkeeran, “Collective variable theory for optical solitons in fibers,” Phys. Rev. E 64, 016608 (2001). [CrossRef]
  19. R. Boesch, P. Stancioff, and C. R. Willis, “Hamiltonian equations for multiple-collective-variable theories of nonlinear klein-gordon equations: a projection-operator approach,” Phys. Rev. B 38, 6713-6735 (1988). [CrossRef]
  20. A. Hasegawa and Y. Kodama, Solitons in Optical Communication (Oxford U. Press, 1995).
  21. J. G. Caputo, N. Flytzanis, and M. P. Sorensen, “Ring laser configuration studied by collective coordinates,” J. Opt. Soc. Am. B 12, 139-145 (1995). [CrossRef]
  22. S. Wabnitz, Y. Kodama, and A. B. Aceves, “Control of optical soliton interactions,” Opt. Fiber Technol. 1, 187-217 (1995). [CrossRef]
  23. S. K. Turitsyn, T. Schafer, K. H. Spatschek, and V. K. Mezentsev, “Path-averaged chirped optical solitons in dispersion-managed fiber communication lines,” Opt. Commun. 163, 122-158 (1999). [CrossRef]
  24. P. Tchofo Dinda, K. Nakkeeran, and A. Labruyere, “Suppression of soliton self-frequency shift by up-shifted filtering,” Opt. Lett. 27, 382-384 (2002). [CrossRef]
  25. K. Nakkeeran, Y. C. Kwan, P. K. A. Wai, A. Labruyere, P. Tchofo Dinda, and A. B. Moubissi, “Analytical design of densely dispersion-managed optical fiber transmission systems with Gaussian and raised cosine return-to-zero ansatze,” J. Opt. Soc. Am. B 21, 1901-1907 (2004). [CrossRef]
  26. P. Lazardis, G. Debarge, and P. Gallion, “Exact solutions for linear propagation of chirped pulses using a chirped Gauss Hermite orthogonal basis,” Opt. Lett. 22, 685-687 (1997). [CrossRef]
  27. P. Tchofo Dinda, K. Nakkeeran, and A. B. Moubissi, “Optimized Hermite-Gaussian ansatz functions for dispersion-managed solitons,” Opt. Commun. 187, 427-433 (2001). [CrossRef]
  28. J. Posth, T. Schafer, E. Laedke, and K. Spatschek, “Fast optimization procedures for third-order dispersion for dispersion management,” Opt. Commun. 219, 241-249 (2003). [CrossRef]
  29. A. H. Liang, H. Toda, and A. Hasegawa, “High speed soliton transmission in dense periodic fibers,” Opt. Lett. 24, 799-801 (1999). [CrossRef]
  30. S. K. Turitsyn, M. P. Fedoruk, and A. Gornakova, “Reduced-power optical solitons in fiber lines with short-scale dispersion management,” Opt. Lett. 24, 869-871 (1999). [CrossRef]
  31. A. Maruta, Y. Yamamoto, S. Okamoto, A. Suziki, T. Morita, A. Agata, and A. Hasegawa, “Effectiveness of densely dispersion managed solitons in ultrahigh speed transmission,” Electron. Lett. 36, 1947-1949 (2000). [CrossRef]
  32. Z. Shumin, L. Fuyun, X. Wencheng, Y. Shiping, W. Jian, and D. Xiaoyi, “Enhanced compression of high-order solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and raman self-scattering,” Opt. Commun. 237, 1-8 (2004). [CrossRef]
  33. J. Fatome, S. Pitois, P. Tchofo Dinda, G. Millot, E. Le Rouzic, B. Cuenot, E. Pincemin, and S. Gosselin, “Effectiveness of fiber lines with symmetric dispersion swing for 160 Gb/s terrestrial transmission systems,” IEEE Photon. Technol. Lett. 16, 2365-2367 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited