OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 3 — Mar. 1, 2009
  • pp: 460–470

Designing microstructured polymer optical fibers for cascaded quadratic soliton compression of femtosecond pulses

Morten Bache  »View Author Affiliations


JOSA B, Vol. 26, Issue 3, pp. 460-470 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000460


View Full Text Article

Enhanced HTML    Acrobat PDF (895 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dispersion of index-guiding microstructured polymer optical fibers is calculated for second-harmonic generation. The quadratic nonlinearity is assumed to come from poling of the polymer, which is chosen to be the cyclic olefin copolymer Topas. We found a very large phase mismatch between the pump and the second-harmonic waves. Therefore the potential for cascaded quadratic second-harmonic generation is investigated in particular or soliton compression of femtosecond pulses. We found that excitation of temporal solitons from cascaded quadratic nonlinearities requires an effective quadratic nonlinearity of 5 pm V or more. This might be reduced if a polymer with a lower Kerr nonlinear refractive index is used. We also found that the group-velocity mismatch could be minimized if the design parameters of the microstructured fiber are chosen so the relative hole size is large and the hole pitch is of the order of the pump wavelength. Almost all design-parameter combinations resulted in cascaded effects in the stationary regime, where efficient and clean soliton compression can be found. We therefore did not see any benefit from choosing a fiber design where the group-velocity mismatch was minimized. Instead numerical simulations showed excellent compression of λ = 800 nm 120 fs pulses with nanojoule pulse energy to few-cycle duration using a standard endlessly single-mode design with a relative hole size of 0.4.

© 2009 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5520) Ultrafast optics : Pulse compression
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 17, 2008
Manuscript Accepted: December 19, 2008
Published: February 12, 2009

Citation
Morten Bache, "Designing microstructured polymer optical fibers for cascaded quadratic soliton compression of femtosecond pulses," J. Opt. Soc. Am. B 26, 460-470 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-3-460

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited