OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 3 — Mar. 1, 2009
  • pp: 460–470

Designing microstructured polymer optical fibers for cascaded quadratic soliton compression of femtosecond pulses

Morten Bache  »View Author Affiliations

JOSA B, Vol. 26, Issue 3, pp. 460-470 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (895 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dispersion of index-guiding microstructured polymer optical fibers is calculated for second-harmonic generation. The quadratic nonlinearity is assumed to come from poling of the polymer, which is chosen to be the cyclic olefin copolymer Topas. We found a very large phase mismatch between the pump and the second-harmonic waves. Therefore the potential for cascaded quadratic second-harmonic generation is investigated in particular or soliton compression of femtosecond pulses. We found that excitation of temporal solitons from cascaded quadratic nonlinearities requires an effective quadratic nonlinearity of 5 pm V or more. This might be reduced if a polymer with a lower Kerr nonlinear refractive index is used. We also found that the group-velocity mismatch could be minimized if the design parameters of the microstructured fiber are chosen so the relative hole size is large and the hole pitch is of the order of the pump wavelength. Almost all design-parameter combinations resulted in cascaded effects in the stationary regime, where efficient and clean soliton compression can be found. We therefore did not see any benefit from choosing a fiber design where the group-velocity mismatch was minimized. Instead numerical simulations showed excellent compression of λ = 800 nm 120 fs pulses with nanojoule pulse energy to few-cycle duration using a standard endlessly single-mode design with a relative hole size of 0.4.

© 2009 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5520) Ultrafast optics : Pulse compression
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Nonlinear Optics

Original Manuscript: November 17, 2008
Manuscript Accepted: December 19, 2008
Published: February 12, 2009

Morten Bache, "Designing microstructured polymer optical fibers for cascaded quadratic soliton compression of femtosecond pulses," J. Opt. Soc. Am. B 26, 460-470 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Birks, D. Mogilevtsev, J. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674-676 (1999). [CrossRef]
  2. J. Lægsgaard, P. J. Roberts, and M. Bache, “Tailoring the dispersion properties of photonic crystal fibers,” Opt. Quantum Electron. 39, 995-1008 (2007). [CrossRef]
  3. M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch,” Opt. Lett. 31, 1612-1614 (2006). [CrossRef] [PubMed]
  4. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2), cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691-1740 (1996). [CrossRef]
  5. R. DeSalvo, D. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28-30 (1992). [CrossRef] [PubMed]
  6. C. R. Menyuk, R. Schiek, and L. Torner, “Solitary waves due to χ(2):χ(2) cascading,” J. Opt. Soc. Am. B 11, 2434-2443 (1994). [CrossRef]
  7. X. Liu, L. Qian, and F. W. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascaded χ(2):χ(2) nonlinearity,” Opt. Lett. 24, 1777-1779 (1999). [CrossRef]
  8. S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505-2510 (2002). [CrossRef]
  9. J. Moses and F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett. 31, 1881-1883 (2006). [CrossRef] [PubMed]
  10. M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express 16, 3273-3287 (2008). [CrossRef] [PubMed]
  11. F. Ö. Ilday, K. Beckwitt, Y.-F. Chen, H. Lim, and F. W. Wise, “Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376-383 (2004). [CrossRef]
  12. M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490-2492 (2007). [CrossRef] [PubMed]
  13. J. Moses, E. Alhammali, J. M. Eichenholz, and F. W. Wise, “Efficient high-energy femtosecond pulse compression in quadratic media with flattop beams,” Opt. Lett. 32, 2469-2471 (2007). [CrossRef] [PubMed]
  14. M. Bache, J. Lægsgaard, O. Bang, J. Moses, and F. W. Wise, “Soliton compression to ultra-short pulses using cascaded quadratic nonlinearities in silica photonic crystal fibers,” Proc. SPIE 6588, 65880P (2007). [CrossRef]
  15. D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. Kazansky, T. Monro, D. Richardson, B. Grappe, M. Cooper, and C. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett. 37, 107-108 (2001). [CrossRef]
  16. P. G. Kazansky, Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, S017 1BJ, UK (personal communication, 2007).
  17. P. G. Kazansky and V. Pruneri, “Electric-field poling of quasi-phase-matched optical fibers,” J. Opt. Soc. Am. B 14, 3170-3179 (1997). [CrossRef]
  18. C. Chang, C. Chen, C. C. Chou, W. J. Kuo, and J. J. Jeng, “Polymers for electro-optical modulation,” J. Macromol. Sci., Polym. Rev. 45, 125-170 (2005). [CrossRef]
  19. G. Y. Guo and J. C. Lin, “Second-harmonic generation and linear electro-optical coefficients of BN nanotubes,” Phys. Rev. B 72, 075416 (2005). [CrossRef]
  20. G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. (Bellingham) 40, 1024-1029 (2001). [CrossRef]
  21. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095-1098 (1980). [CrossRef]
  22. W. Krolikowski, O. Bang, N. Nikolov, D. Neshev, J. Wyller, J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B: Quantum Semiclassical Opt. 6, s288-s294 (2004). [CrossRef]
  23. M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B 24, 2752-2762 (2007). [CrossRef]
  24. G. P. Agrawal, Nonlinear Fiber Optics, 3ed. (Academic, 2001).
  25. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282-3285 (1997). [CrossRef]
  26. J. Moses and F. W. Wise, “Controllable self-steepening of ultrashort pulses in quadratic nonlinear media,” Phys. Rev. Lett. 97, 073903 (2006). [CrossRef] [PubMed]
  27. J. Moses and F. W. Wise, “Derivation of nonlinear evolution equations for coupled and single fields in a quadratic medium,” arXiv:physics/0604170.
  28. B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, “Modal cutoff in microstructured optical fibers,” Opt. Lett. 27, 1684-1686 (2002). [CrossRef]
  29. T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  30. A. Baum, P. J. Scully, W. Perrie, D. Jones, R. Issac, and D. A. Jaroszynski, “Pulse-duration dependency of femtosecond laser refractive index modification in poly(methyl methacrylate),” Opt. Lett. 33, 651-653 (2008). [CrossRef] [PubMed]
  31. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665-2673 (1989). [CrossRef]
  32. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  33. J. Lægsgaard, A. Bjarklev, and S. Libori, “Chromatic dispersion in photonic crystal fibers: fast and accurate scheme for calculation,” J. Opt. Soc. Am. B 20, 443-448 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited