OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 3 — Mar. 1, 2009
  • pp: 478–486

Ultraslow temporal vector optical solitons in a cold four-level tripod atomic system

Liu-Gang Si, Wen-Xing Yang, and Xiaoxue Yang  »View Author Affiliations

JOSA B, Vol. 26, Issue 3, pp. 478-486 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (325 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show the possibility of generating ultraslow temporal vector optical solitons in a cold lifetime-broadened four-level tripod atomic medium under Raman excitation. We demonstrate that the two orthogonally polarized components of the low-intensity signal field can evolve into various distortion-free temporal vector optical solitons, such as bright–bright vector solitons with ultraslow group velocity. These results are produced from the balance of self- and cross-phase modulation effects and dispersion. We also show that Manakov temporal vector solitons may be realized by adjusting the corresponding self- and cross-phase modulation and dispersion effects of our system.

© 2009 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(260.7490) Physical optics : Zeeman effect

ToC Category:
Nonlinear Optics

Original Manuscript: October 31, 2008
Revised Manuscript: December 2, 2008
Manuscript Accepted: December 17, 2008
Published: February 17, 2009

Liu-Gang Si, Wen-Xing Yang, and Xiaoxue Yang, "Ultraslow temporal vector optical solitons in a cold four-level tripod atomic system," J. Opt. Soc. Am. B 26, 478-486 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  2. H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68, 423-444 (1996). [CrossRef]
  3. Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007). [CrossRef]
  4. Y. Wu, “Matched soliton pairs of four-wave mixing in molecular magnets,” J. Appl. Phys. 103, 104903 (2008). [CrossRef]
  5. X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007). [CrossRef]
  6. B. A. Malomed, Soliton Management in Periodic Systems (Springer, 2006) and reference therein.
  7. Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004). [CrossRef] [PubMed]
  8. Y. Wu and L. Deng, “Ultraslow bright and dark optical solitons in a cold three-state medium,” Opt. Lett. 29, 2064-2066 (2004). [CrossRef] [PubMed]
  9. Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold-atom media,” Phys. Rev. A 71, 053820 (2005). [CrossRef]
  10. L. Deng, M. G. Payne, G. Huang, and E. W. Hagley, “Formation and propagation of matched and coupled ultraslow optical soliton pairs in a four-level double-Λ system,” Phys. Rev. E 72, 055601(R) (2005). [CrossRef]
  11. C. Hang, G. Huang, and L. Deng, “Generalized nonlinear Schrödinger equation and ultraslow optical solitons in a cold four-state atomic system,” Phys. Rev. E 73, 036607 (2006). [CrossRef]
  12. X.-T. Xie, W.-B. Li, and X. Yang, “Bright, dark, bistable bright, and vortex spatial-optical solitons in a cold three-state medium,” J. Opt. Soc. Am. B 23, 1609-1614 (2006). [CrossRef]
  13. X. Wu, X.-T. Xie, and X. Yang, “Dark and bright vortex solitons in electromagnetically induced transparent media,” J. Phys. B 39, 3263-3273 (2006). [CrossRef]
  14. W.-X. Yang, J.-M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008). [CrossRef]
  15. X.-J. Liu, H. Jing, and M.-L. Ge, “Solitons formed by dark-state polaritons in an electromagnetic induced transparency,” Phys. Rev. A 70, 055802 (2004). [CrossRef]
  16. D. V. Skryabin, A. V. Yulin, and A. I. Maimistov, “Localized polaritons and second-harmonic generation in a resonant medium with quadratic nonlinearity,” Phys. Rev. Lett. 96, 163904 (2006). [CrossRef] [PubMed]
  17. G. T. Adamashvili, C. Weber, A. Knorr, and N. T. Adamashvili, “Optical nonlinear waves in semiconductor quantum dots: solitons and breathers,” Phys. Rev. A 75, 063808 (2007). [CrossRef]
  18. Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81-197 (1998). [CrossRef]
  19. Q. Park and H. J. Shin, “Systematic construction of multicomponent optical solitons,” Phys. Rev. E 61, 3093-3106 (2000). [CrossRef]
  20. A. E. Korolev, V. N. Nazarov, D. A. Nolan, and C. M. Truesdale, “Experimental observation of orthogonally polarized time-delayed optical soliton trapping in birefringent fibers,” Opt. Lett. 30, 132-134 (2005). [CrossRef] [PubMed]
  21. Y. Barad and Y. Silberberg, “Polarization evolution and polarization instability of solitons in a birefringent optical fiber,” Phys. Rev. Lett. 78, 3290-3293 (1997). [CrossRef]
  22. D. Rand, I. Glesk, C.-S. Brès, D. A. Nolan, X. Chen, J. Koh, J. W. Fleischer, K. Steiglitz, and P. R. Prucnal, “Observation of temporal vector soliton propagation and collision in birefringent fiber,” Phys. Rev. Lett. 98, 053902 (2007). [CrossRef] [PubMed]
  23. S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82, 3988-3991 (1999). [CrossRef]
  24. G. Huang, K. Jiang, M. G. Payne, and L. Deng, “Formation and propagation of coupled ultraslow optical soliton pairs in a cold three-state double-Λ, system,” Phys. Rev. E 73, 056606 (2006). [CrossRef]
  25. C. Hang and G. Huang, “Weak-light ultraslow vector solitons via electromagnetically induced transparency,” Phys. Rev. A 77, 033830 (2008). [CrossRef]
  26. L.-G. Si, J.-B. Liu, X.-Y. Lü, and X. Yang, “Ultraslow temporal vector optical solitons in a cold five-state atomic medium under Raman excitation,” J. Phys. B 41, 215504 (2008). [CrossRef]
  27. M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211-3214 (1994). [CrossRef] [PubMed]
  28. Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Observation of incoherently coupled photorefractive spatial soliton pairs,” Opt. Lett. 21, 1436-1438 (1996). [CrossRef] [PubMed]
  29. J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699-3702 (1996). [CrossRef] [PubMed]
  30. C. Anastassiou, J. W. Fleischer, T. Carmon, M. Segev, and K. Steiglitz, “Information transfer via cascaded collisions of vector solitons,” Opt. Lett. 26, 1498-1500 (2001). [CrossRef]
  31. M. Delquè, T. Sylvestre, H. Maillotte, C. Cambournac, P. Kockaert, and M. Haelterman, “Experimental observation of the elliptically polarized fundamental vector soliton of isotropic Kerr media,” Opt. Lett. 30, 3383-3385 (2005). [CrossRef]
  32. D. V. Skryabin, F. Biancalana, D. M. Bird, and F. Benabid, “Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas,” Phys. Rev. Lett. 93, 143907 (2004). [CrossRef] [PubMed]
  33. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36-42 (1997). [CrossRef]
  34. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999). [CrossRef]
  35. Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005). [CrossRef]
  36. M. D. Lukin and A. Imamoğlu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419-1422 (2000). [CrossRef] [PubMed]
  37. H. Schmidt and A. Imamoğlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936-1938 (1996). [CrossRef] [PubMed]
  38. Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008). [CrossRef]
  39. Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004). [CrossRef]
  40. Y. Wu and X. Yang, “Eigenstates and eigenenergies of four-wave-mixing models,” Opt. Lett. 29, 839-841 (1996). [CrossRef]
  41. E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66, 015802 (2002). [CrossRef]
  42. E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation and nonlinear generation dynamics in a coherently prepared four-level system,” Phys. Rev. A 65, 053808 (2002). [CrossRef]
  43. T. Wang, M. Koštrun, and S. F. Yelin, “Multiple beam splitter for single photons,” Phys. Rev. A 70, 033822 (2004). [CrossRef]
  44. A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Beam splitting and Hong-Ou-Mandel interference for stored light,” Phys. Rev. A 75, 013810 (2007). [CrossRef]
  45. F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001 (2003). [CrossRef] [PubMed]
  46. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998). [CrossRef]
  47. S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004). [CrossRef]
  48. D. Petrosyan and Y. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration,” Phys. Rev. A 70, 023822 (2004). [CrossRef]
  49. S. Li, X. Yang, X. Cao, C. Zhang, C. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008). [CrossRef] [PubMed]
  50. Y. Guo, L. Zhou, L.-M. Kuang, and C. P. Sun, “Magneto-optical Stern-Gerlach effect in an atomic ensemble,” Phys. Rev. A 78, 013833 (2008). [CrossRef]
  51. D. A. Steck, http://steck.us/alkalidata.
  52. Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 063803 (2004). [CrossRef]
  53. Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Ultraviolet single-photons on demand and entanglement of photons with a large frequency difference,” Phys. Rev. A 70, 063812 (2004). [CrossRef]
  54. X. Yang and Y. Wu, “Achieving an ultra-slowly propagating maximally entangled state of two light beams via four-wave mixing in a double-Λ system,” J. Opt. B: Quantum Semiclassical Opt. 7, 54-56 (2005). [CrossRef]
  55. J. Yang, “Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics,” Phys. Rev. E 59, 2393-2405 (1999). [CrossRef]
  56. V. E. Zakharov and E. L. Schulman, “To the integrability of the system of two coupled nonlinear Schrödinger equations,” Physica D 4, 270-274 (1982). [CrossRef]
  57. B. Tan and J. P. Boyd, “Stability and long time evolution of the periodic solutions to the two coupled nonlinear Schrödinger equations,” Chaos, Solitons Fractals 12, 721-734 (2001) and reference therein. [CrossRef]
  58. A. Aydin and B. Karasözen, “Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions,” Comput. Phys. Commun. 177, 566-583 (2007) and reference therein. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited