OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 3 — Mar. 1, 2009
  • pp: 517–527

Depolarization field of spheroidal particles

Alexander Moroz  »View Author Affiliations

JOSA B, Vol. 26, Issue 3, pp. 517-527 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (355 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact analytical formula up to the order of k 3 , where k is a wave vector, is derived for the depolarization field E d of a spheroidal particle by performing explicitly the steps of the recipe outlined by Meier and Wokaun [Opt. Lett. 8, 581 (1983)] . For the static component of E d a general electrostatic formula valid for a particle of a general shape is rederived within the Meier and Wokaun framework. The dynamic k 2 -dependent depolarization component of E d is shown to depend on dynamic geometrical factors, which can be expressed in terms of the standard geometrical factors of electrostatics. The Meier and Wokaun recipe itself is shown to be equivalent to a long-wavelength limit of the Green’s function technique. The resulting Meier and Wokaun long-wavelength approximation is found to exhibit a redshift compared against exact T-matrix results. At least for a sphere, it is possible to get rid of the redshift by assuming a weak nonuniformity of the field E int inside a particle, which can be fully accounted for by a renormalization of the dynamic geometrical factors. My results may be relevant for various plasmonic, or nanoantenna, applications of spheroidal particles with a dominant electric dipole scattering, whenever it is necessary to go beyond the Rayleigh approximation and to capture the essential size-dependent features of scattering, local fields, SERS, hyper-Raman and second-harmonic-generation enhancements, decay rates, and photophysics of dipolar arrays.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.3770) Scattering : Long-wave scattering
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: October 21, 2008
Manuscript Accepted: November 30, 2008
Published: February 24, 2009

Alexander Moroz, "Depolarization field of spheroidal particles," J. Opt. Soc. Am. B 26, 517-527 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, “Shape-controlled synthesis of colloidal platinum nanoparticles,” Science 272, 1924-1926 (1996). [CrossRef] [PubMed]
  2. R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901-1903 (2001). [CrossRef] [PubMed]
  3. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8, 581-583 (1983). [CrossRef] [PubMed]
  4. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998). [CrossRef]
  5. M. Meier, A. Wokaun, and P. F. Liao, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B 2, 931-949 (1985). [CrossRef]
  6. A. Wokaun, “Surface-enhanced electromagnetic processes,” in Solid State Physics, H.Ehrenreich, D.Turnbull, and F.Seitz, eds. (Academic, 1984), Vol. 38, pp. 223-294. [CrossRef]
  7. A. Wokaun, “Surface enhancement of optical fields mechanism and applications,” Mol. Phys. 56, 1-33 (1985). [CrossRef]
  8. E. J. Zeman and G. C. Schatz, “Electromagnetic theory calculations for spheroids: an accurate study of particle size dependence of SERS and hyper-Raman enhancements,” in Dynamics on Surfaces, Proceedings of the 17th Jerusalem Symposium on Quantum Chemistry and Biochemistry, B.Pullman, ed. (Reidel, 1984), pp. 413-424. [CrossRef]
  9. E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium,” J. Phys. Chem. 91, 634-643 (1987). [CrossRef]
  10. W.-H. Yang, G. C. Schatz, and R. P. van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys. 103, 869-875 (1995). [CrossRef]
  11. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668-677 (2003). [CrossRef]
  12. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  13. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825-839 (1971). [CrossRef]
  14. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, 2002).
  15. A. Moroz, “Improvement of Mishchenko's T-matrix code for absorbing particles,” Appl. Opt. 44, 3604-3609 (2005). [CrossRef] [PubMed]
  16. J. J. Penninkhof, A. Moroz, A. Polman, and A. van Blaaderen, “Optical properties of spherical and oblate spheroidal gold shell colloids,” J. Phys. Chem. C 112, 4146-4150 (2008). [CrossRef]
  17. C. Pecharromán, J. Pérez-Juste, G. Mata-Osoro, L. M. Liz-Marzán, and P. Mulvaney, “Redshift of surface plasmon modes of small gold rods due to their atomic roughness and end-cap geometry,” Phys. Rev. B 77, 035418 (2008). [CrossRef]
  18. H. Kang and G. W. Milton, “Solutions to the Polya-Szego conjecture and the weak Eshelby conjecture,” Arch. Ration. Mech. Anal. 188, 93-116 (2008). [CrossRef]
  19. L. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media (Pergamon, 1984).
  20. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  21. A. F. Stevenson, “Electromagnetic scattering by an ellipsoid in the third approximation,” J. Appl. Phys. 24, 1143-1151 (1953). [CrossRef]
  22. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2002).
  23. O. D. Kellogg, Foundations of Potential Theory (Dover, 1953).
  24. A. D. Yaghjian, “Electric dyadic Green's functions in the source region,” Proc. IEEE 68, 248-263 (1980). [CrossRef]
  25. A summary of formulas is given in supplementary material, which is available at http://www.wave-scattering.com/dplf-suppl.pdf
  26. A. Moroz, “Electron mean-free path in a spherical shell geometry,” J. Phys. Chem. C 112, 10641-10652 (2008). [CrossRef]
  27. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  28. H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83, 4625-4627 (2003). [CrossRef]
  29. R. G. Newton, Scattering Theory of Waves and Particles (Springer, 1982).
  30. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1973).
  31. M. Kerker, D.-S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata,” Appl. Opt. 19, 4159-4174 (1980). [CrossRef] [PubMed]
  32. R. Gans and H. Happel, “Zur Optik Kolloidaler Metallösungen,” Ann. Phys. 29, 277-300 (1909). [CrossRef]
  33. W. T. Doyle and A. Agarwal, “Optical extinction of metal spheres,” J. Opt. Soc. Am. 55, 305-308 (1965). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited