OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 595–602

Micro-Raman spectroscopy of refractive index microstructures in silicone-based hydrogel polymers created by high-repetition-rate femtosecond laser micromachining

Li Ding, Luiz Gustavo Cancado, Lukas Novotny, Wayne H. Knox, Neil Anderson, Dharmendra Jani, Jeffrey Linhardt, Richard I. Blackwell, and Jay F. Künzler  »View Author Affiliations

JOSA B, Vol. 26, Issue 4, pp. 595-602 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (527 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Micro-Raman spectroscopy was used to study silicone-based hydrogel polymers after being modified by 800 nm , 27 fs laser pulses from a Ti:sapphire oscillator at 93 MHz repetition rate. When the irradiation conditions were below the optical breakdown threshold of the polymers, no significant changes in the Raman spectra and background fluorescence were observed even when refractive index changes as large as + 0.06 ± 0.005 were observed. On the other hand, changes in the Raman spectra and fluorescence were easily detected when higher pulse energy was employed to induce visible optical damage in the hydrogel polymers. These results show that a significant refractive index modification, below the optical breakdown threshold in silicone-based hydrogel polymers, can be realized in the absence of any significant change in the Raman spectrum of polymer composition. A thermal model is presented to explain these results. It shows that high-repetition-rate laser pulses cause significant heat accumulation, which can induce additional cross-linking and densification in the polymer network, resulting in locally increased refractive index.

© 2009 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(300.6450) Spectroscopy : Spectroscopy, Raman
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:

Original Manuscript: October 21, 2008
Manuscript Accepted: January 8, 2009
Published: March 3, 2009

Li Ding, Luiz Gustavo Cancado, Lukas Novotny, Wayne H. Knox, Neil Anderson, Dharmendra Jani, Jeffrey Linhardt, Richard I. Blackwell, and Jay F. Künzler, "Micro-Raman spectroscopy of refractive index microstructures in silicone-based hydrogel polymers created by high-repetition-rate femtosecond laser micromachining," J. Opt. Soc. Am. B 26, 595-602 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729-1731 (1996). [CrossRef] [PubMed]
  2. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311-1313 (1999). [CrossRef]
  3. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett. 26, 42-43 (2001). [CrossRef]
  4. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001). [CrossRef]
  5. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26, 1516-1518 (2001). [CrossRef]
  6. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708-4716 (2005). [CrossRef] [PubMed]
  7. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023-2025 (1996). [CrossRef] [PubMed]
  8. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett. 26, 1912-1914 (2001). [CrossRef]
  9. D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79, 605-612 (2004). [CrossRef]
  10. L. Ding, R. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micromachining,” Opt. Express 14, 11901-11909 (2006). [CrossRef] [PubMed]
  11. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132-134 (1997). [CrossRef] [PubMed]
  12. G. Witzgall, R. Vrigen, E. Yablonovitch, V. Doan, and B. J. Schwartz, “Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures,” Opt. Lett. 23, 1745-1747 (1998). [CrossRef]
  13. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29, 1840-1842 (2004). [CrossRef] [PubMed]
  14. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14, 291-297 (2006). [CrossRef] [PubMed]
  15. G. Zhou, M. J. Ventura, M. R. Vanner, and M. Gu, “Use of ultrafast-laser-driven microexplosion for fabricating three-dimensional void-based diamond-lattice photonic crystals in a solid polymer material,” Opt. Lett. 29, 2240-2242 (2004). [CrossRef] [PubMed]
  16. D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939-5946 (2005). [CrossRef] [PubMed]
  17. C. R. Mendonca, L. R. Cerami, T. Shih, R. W. Tilghman, T. Baldacchini, and E. Mazur, “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores,” Opt. Express 16, 200-206 (2008). [CrossRef] [PubMed]
  18. C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisiontrade, Focusreg Night&Daytrade and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004). [CrossRef]
  19. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351-354 (2003). [CrossRef]
  20. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496-2504 (2002). [CrossRef]
  21. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015-1047 (2005). [CrossRef]
  22. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. Kim, and E. Mazur, “Dynamic of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196-203 (2002). [PubMed]
  23. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726-1728 (2001). [CrossRef]
  24. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76, 367-372 (2003). [CrossRef]
  25. W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006). [CrossRef]
  26. B. Yu, B. Chen, X. Y. Yang, J. R. Qiu, X. W. Jiang, C. S. Zhu, and K. Hirao, “Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses,” J. Opt. Soc. Am. B 21, 83-87 (2004). [CrossRef]
  27. D. K. Y. Low, H. Xie, Z. Xiong, and G. C. Lim, “Femtosecond laser direct writing of embedded optical waveguides in aluminosilicate glass,” Appl. Phys. A 81, 1633-1638 (2005). [CrossRef]
  28. B. Zhu, Y. Dai, H. Ma, S. Zhang, G. Lin, and J. Qiu, “Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses,” Opt. Express 15, 6069-6074 (2007). [CrossRef] [PubMed]
  29. M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242, 162-167 (2005). [CrossRef]
  30. G. J. Lee, J. Park, E. K. Kim, Y. P. Lee, K. M. Kim, H. Cheong, C. S. Yoon, Y. D. Son, and J. Jang, “Microstructure of femtosecond laser-induced grating in amorphous silicon,” Opt. Express 13, 6445-6453 (2005). [CrossRef] [PubMed]
  31. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Valle, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748-750 (2004). [CrossRef] [PubMed]
  32. S. Kuper, S. Modaressi, and M. Stuke, “Photofragmentation pathways of a PMMA model-compound under UV excimer laser ablation conditions,” J. Phys. Chem. 94, 7514-7518 (1990). [CrossRef]
  33. A. Baum, P. J. Scully, M. Basanta, C. L. P. Thomas, P. R. Fielden, N. J. Goddard, W. Perrie, and P. R. Chalker, “Photochemistry of refractive index structures in poly(methyl methacrylate) by femtosecond laser irradiation,” Opt. Lett. 32, 190-192 (2007). [CrossRef]
  34. D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, 1991).
  35. G. Socrates, Infrared Characteristic Group Frequencies (Wiley, 1997).
  36. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784-1794 (2001). [CrossRef]
  37. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91-95 (1998). [CrossRef]
  38. N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses,” Opt. Express 12, 4019-4024 (2004). [CrossRef] [PubMed]
  39. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30, 352-354 (2005). [CrossRef] [PubMed]
  40. Y. Jaluria and K. E. Torrance, Computational Heat Transfer (Taylor & Francis, 2003).
  41. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008). [CrossRef] [PubMed]
  42. L. Ding, R. I. Blackwell, J. F. Kunzler, and W. H. Knox, “Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers,” Appl. Opt. 47, 3100-3108 (2008). [CrossRef] [PubMed]
  43. J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23, 583-592 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited