OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 610–619

Identification of competing ultrafast all-optical switching mechanisms in Si woodpile photonic crystals

Philip J. Harding, Tijmen G. Euser, and Willem L. Vos  »View Author Affiliations

JOSA B, Vol. 26, Issue 4, pp. 610-619 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (688 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a systematic study of ultrafast all-optical switching of Si photonic bandgap woodpile crystals using broadband tunable nondegenerate pump-probe spectroscopy. At pump-probe coincidence, we investigate the behavior of the differential reflectivity at the blue edge of the stop band for a wide range of pump and probe frequencies. Both dispersive and absorptive features are observed from the probe spectra at coincidence. As the pump frequency is tuned through half the electronic bandgap of Si, the magnitude of both these features increases. For the first time, to the best of our knowledge, we unambiguously identify this dispersive effect with the electronic Kerr effect in photonic crystals and attribute the absorptive features to nondegenerate two photon absorption. The dispersive and absorptive nonlinear coefficients are extracted and are found to agree well with the literature. Finally, we propose a nondegenerate figure of merit, which defines the quality of switching for all nondegenerate optical switching processes.

© 2009 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4180) Nonlinear optics : Multiphoton processes
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Ultrafast Optics

Original Manuscript: July 29, 2008
Revised Manuscript: December 2, 2008
Manuscript Accepted: December 3, 2008
Published: March 6, 2009

Philip J. Harding, Tijmen G. Euser, and Willem L. Vos, "Identification of competing ultrafast all-optical switching mechanisms in Si woodpile photonic crystals," J. Opt. Soc. Am. B 26, 610-619 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. M. Johnson, A. F. Koenderink, and W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102(R) (2002). [CrossRef]
  2. B. P. J. Bret, T. L. Sonnemans, and T. W. Hijmans, “Capturing a light pulse in a short high-finesse cavity,” Phys. Rev. A 68, 023807 (2003). [CrossRef]
  3. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  4. Q. Xu, V. R. Almeida, and M. Lipson, “Micrometer-scale all-optical wavelength converter on silicon,” Opt. Lett. 30, 2733-2735 (2005). [CrossRef] [PubMed]
  5. S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1, 293-296 (2007). [CrossRef]
  6. P. J. Harding, T. G. Euser, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Ultrafast optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007). [CrossRef]
  7. S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102(R) (2002). [CrossRef]
  8. C. Becker, S. Linden, G. von Freymann, M. Wegener, N. Tétreault, E. Vekris, V. Kitaev, and G. A. Ozin, “Two-color pump-probe experiments on silicon inverse opals,” Appl. Phys. Lett. 87, 091111 (2005). [CrossRef]
  9. T. G. Euser, H. Wei, J. Kalkman, Y. Jun, A. Polman, D. J. Norris, and W. L. Vos, “Ultrafast optical switching of three-dimensional Si inverse opal photonic band gap crystals,” J. Appl. Phys. 102, 053111 (2007). [CrossRef]
  10. A. Chin, K. Y. Lee, B. C. Lin, and S. Horng, “Picosecond photoresponse of carriers in Si ion-implanted Si,” Appl. Phys. Lett. 69, 653655 (1996). [CrossRef]
  11. M. Först, J. Niehusmann, T. Plötzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, “High-speed all-optical switching in ion-implanted silicon-on-insulator microring resonators,” Opt. Lett. 32, 2046-2048 (2007). [CrossRef] [PubMed]
  12. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007). [CrossRef]
  13. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954-2956 (2003). [CrossRef]
  14. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90, 191104 (2007). [CrossRef]
  15. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007). [CrossRef]
  16. A. Haché and M. Bourgeois, “Ultrafast all-optical switching in a silicon-based photonic crystal,” Appl. Phys. Lett. 77, 4089-4091 (2000). [CrossRef]
  17. D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel'kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91, 213903 (2003). [CrossRef] [PubMed]
  18. S. R. Hastings, M. J. A. de Dood, H. Kim, W. Marshall, H. S. Eisenberg, and D. Bouwmeester, “Ultrafast optical response of a high-reflectivity GaAs/AlAs Bragg mirror,” Appl. Phys. Lett. 86, 031109 (2005). [CrossRef]
  19. J. P. Mondia, H. W. Tan, S. Linden, H. M. van Driel, and J. F. Young, “Ultrafast tuning of two-dimensional planar photonic-crystal waveguides via free-carrier injection and the optical Kerr effect,” J. Opt. Soc. Am. B 22, 2480-2486 (2005). [CrossRef]
  20. Indeed, this Kerr nonlinearity was also claimed by our group , but was later corrected .
  21. T. G. Euser, A. J. Molenaar, J. G. Fleming, B. Gralak, A. Polman, and W. L. Vos, “All-optical octave-broad ultrafast switching of Si woodpile photonic band gap crystals,” Phys. Rev. B 77, 115214 (2008). [CrossRef]
  22. T. G. Euser, “Ultrafast optical switching of photonic crystals,” Ph.D. dissertation (University of Twente, 2007), ISBN 978-90-365-2471-1, www.photonicbandgaps.com.
  23. J. G. Fleming and S. Lin, “Three-dimensional photonic crystal with a stop band from 1.35to1.95 μm,” Opt. Lett. 24, 49-51 (1999). [CrossRef]
  24. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  25. B. Gralak, M. J. A. de Dood, G. Tayeb, S. Enoch, and D. Maystre, “Theoretical study of photonic band gaps in woodpile crystals,” Phys. Rev. E 67, 066601 (2003). [CrossRef]
  26. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413-416 (1994). [CrossRef]
  27. W. L. Vos, H. M. van Driel, M. Megens, A. F. Koenderink, and A. Imhof, “Experimental probes of the optical properties of photonic crystals,” in Proceedings of the NATO ASI Photonic Crystals and Light Localization in the 21st Century, C.M.Soukoulis, ed. (Kluwer, 2001).
  28. A. F. Koenderink, “Emission and transport of light in photonic crystals,” Ph.D. dissertation, (University of Amsterdam, 2003), ISBN 90-9016903-2, www.photonicbandgaps.com.
  29. M. J. A. de Dood, B. Gralak, A. Polman, and J. G. Fleming, “Superstructure and finite-size effects in a Si photonic woodpile crystal,” Phys. Rev. B 67, 035322 (2003). [CrossRef]
  30. T. G. Euser and W. L. Vos, “Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors,” J. Appl. Phys. 97, 043102 (2005). [CrossRef]
  31. J. F. Reintjes and J. C. McGroddy, “Indirect two-photon transitions in Si at 1.06 μm,” Phys. Rev. Lett. 30, 901-903 (1973). [CrossRef]
  32. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80, 416-418 (2002). [CrossRef]
  33. K. W.-K. Shung and Y. C. Tsai, “Surface effects and band measurements in photonic crystals,” Phys. Rev. B 48, 11265-11269 (1993). [CrossRef]
  34. M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Angle-resolved transmission spectroscopy of three-dimensional photonic crystals fabricated by direct laser writing,” Appl. Phys. Lett. 87, 221104 (2005). [CrossRef]
  35. Variable Angle Spectroscopic Ellipsometry Handbook (WVASE32) (J. A. Woollam Co., Inc., 1987).
  36. C. Rotaru, S. Nastase, and N. Tomozeiu, “Amorphous phase influence on the optical bandgap of polysilicon,” Phys. Status Solidi A 171, 365-370 (1999). [CrossRef]
  37. H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz-Keldysch effect in indirect gap semiconductors,” J. Phys. B 39, 2737-2746 (2006). [CrossRef]
  38. Higher probe intensities do not influence the magnitude of the nondegenerate absorption: in the absence of linear absorption, as in our case, the differential equation governing nondegenerate two photon absorption is dIProbedz=−2β12(EProbe,EPump)IPumpIProbe(z).Here, β12 is the nondegenerate two-photon absorption coefficient. From Eq. we see that higher probe intensities do not increase absorption: The coefficient of −IProbe(z) is 2β12(EProbe+EPump)IPump=αeff, which is an effective absorption coefficient. Higher probe intensities merely lead to a higher absorbance, commensurate to the number of absorbed photons.
  39. M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96-99 (1990). [CrossRef] [PubMed]
  40. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643-2650 (2000). [CrossRef]
  41. K. Ikeda, Y. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express 15, 17761-17771 (2007). [CrossRef] [PubMed]
  42. I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007). [CrossRef]
  43. We had independently measured the radius of the beam waist at the focus, and had confirmed that the radius is diffraction limited.
  44. E. Garmire, “Nonlinear optics in semiconductors,” Phys. Today 47, 42-48 (1994). [CrossRef]
  45. We note that the n2 in Eq. depends on EPump only. Measurements of nondegenerate n2 are still lacking in the literature.
  46. C. Klingshirn, Semiconductor Optics (Springer, 2005).
  47. S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300-3300 nm,” Appl. Phys. Lett. 93, 131102 (2008). [CrossRef]
  48. A. Hartsuiker, P. J. Harding, Y.-R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Kerr and free-carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three-photon edge of GaAs,” J. Appl. Phys. 104, 083105 (2008). [CrossRef]
  49. M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum Electron. 30, 249-255 (1994). [CrossRef]
  50. P. Paddon and J. F. Young, “Two-dimensional vector-coupled-mode theory for textured planar waveguides,” Phys. Rev. B 61, 2090-2101 (2000). [CrossRef]
  51. T. G. Euser, A. J. Molenaar, J. G. Fleming, B. Gralak, A. Polman, and W. L. Vos, “All-optical ultrafast switching of Si woodpile photonic band gap crystals,” arXiv:physics p.0603045v1 (2006).
  52. D. C. Hutchins and E. W. Van Stryland, “Nondegenerate two-photon absorption in zinc blende semiconductors,” J. Opt. Soc. Am. B 9, 2065-2074 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited