OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 627–632

Optical properties of a quasi-periodic generalized Fibonacci structure of chiral and material layers

Vladimir R. Tuz  »View Author Affiliations

JOSA B, Vol. 26, Issue 4, pp. 627-632 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (709 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The reflection and transmission coefficients of the perpendicular and parallel polarization plane electromagnetic waves of a finite quasi-periodic Fibonacci sequence of chiral and convenient isotropic magnetodielectric layers are obtained using the 2 × 2 -block-representation transfer-matrix formulation. A correlation has been established between geometrical and spectral properties of the structure under consideration. Numerical simulations are carried out for different structures to reveal the dependence of the reflection and transmission coefficients on the frequency, chirality parameter, and the angle of wave incidence.

© 2009 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(260.5430) Physical optics : Polarization
(160.1585) Materials : Chiral media

ToC Category:

Original Manuscript: November 5, 2008
Revised Manuscript: January 14, 2009
Manuscript Accepted: January 20, 2009
Published: March 6, 2009

Vladimir R. Tuz, "Optical properties of a quasi-periodic generalized Fibonacci structure of chiral and material layers," J. Opt. Soc. Am. B 26, 627-632 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Jablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10, 283-295 (1993). [CrossRef]
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, 1995).
  3. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).
  4. M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization in optics: quasiperiodic media,” Phys. Rev. Lett. 58, 2436-2438 (1987). [CrossRef] [PubMed]
  5. W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci multilayers,” Phys. Rev. Lett. 72, 633-636 (1994). [CrossRef] [PubMed]
  6. E. Macia, “Optical engineering with Fibonacci dielectric multilayers,” Appl. Phys. Lett. 73, 3330-3332 (1998). [CrossRef]
  7. X. Wang, U. Grimm, and M. Schreiber, “Trace and antitrace maps for aperiodic sequences: extensions and applications,” Phys. Rev. B 62, 14020 (2000). [CrossRef]
  8. M. Aissaoui, J. Zaghdoudi, M. Kanzari, and B. Rezig, “Optical properties of the quasi-periodic one-dimensional generalized multilayer Fibonacci structures,” Prog. Electromagn. Res. PIER 59, 69-83 (2006). [CrossRef]
  9. M. Ghulinyan, C. J. Oton, L. Dal Negro, L. Pavesi, R. Sapienza, M. Colocci, and D. Wiersma, “Light-pulse propagation in Fibonacci quasicrystals,” Phys. Rev. B 71, 094204 (2005). [CrossRef]
  10. L. Moretti, I. Rea, L. Rotiroti, I. Rendina, G. Abbate, A. Marino, and L. Du Stefano, “Photonic band gaps analysis of Thue-Morse multilayers made of porous silicon,” Opt. Express 14, 6264-6272 (2006). [CrossRef] [PubMed]
  11. H. T. Hattori, V. M. Schneider, and O. Lisboa, “Cantor set Bragg grating,” J. Opt. Soc. Am. A 17, 1583-1589 (2000). [CrossRef]
  12. A. V. Lavrinenko, S. V. Zhukovsky, K. S. Sandomirski, and S. V. Gaponenko, “Propagation of classical waves in nonperiodic media: scaling properties of an optical Cantor filter,” Phys. Rev. E 65, 036621 (2002). [CrossRef]
  13. T. Okamoto and A. Fukuyama, “Light amplification from Cantor and asymmetric multilayer resonators,” Opt. Express 13, 8122-8127 (2005). [CrossRef] [PubMed]
  14. L. A. Chernov, Wave Propagation in a Random Medium (McGraw-Hill, 1961).
  15. A. Ishimaru, Wave Propagation and Scattering in Random Media, IEEE/OUP Series on Electromagnetic Wave Theory (IEEE Press, 1997).
  16. A. Lakhtakia, V. K. Varadan, and V. V. Varadan, Time-Harmonic Electromagnetic Fields in Chiral Media, Lecture Notes in Physics (Springer-Verlag, 1989).
  17. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).
  18. K. M. Flood and D. L. Jaggard, “Distributed feedback lasers in chiral media,” IEEE J. Quantum Electron. 30, 339-345 (1994). [CrossRef]
  19. M. Norgen and S. He, “General scheme for electromagnetic reflection and transmission for composite structures of complex materials,” IEE Proc., Part H: Microwaves, Antennas Propag. 142, 52-56 (1995). [CrossRef]
  20. N. Y. Ha, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Simultaneous RGB reflections from single-pitched cholesteric liquid crystal films with Fibonacci defects,” Opt. Express 15, 1024-1029 (2007). [CrossRef] [PubMed]
  21. V. R. Tuz and V. B. Kazanskiy, “Depolarization properties of a periodic sequence of chiral and material layers,” J. Opt. Soc. Am. A 25, 2704-2709 (2008). [CrossRef]
  22. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. A 62, 502-510 (1972). [CrossRef]
  23. M. Born and E. Wolf, Principles of Optics (Pergamon, 1968).
  24. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. general theory,” J. Opt. Soc. Am. 67, 423-438 (1977). [CrossRef]
  25. V. B. Kazanskiy and V. V. Podlozny, “Quasiperiodic layered structure with resistive films,” Electromagnetics 17, 131-146 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited