OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 659–670

Sodium and potassium vapor Faraday filters revisited: theory and applications

S. D. Harrell, C.-Y. She, Tao Yuan, David A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu  »View Author Affiliations


JOSA B, Vol. 26, Issue 4, pp. 659-670 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000659


View Full Text Article

Enhanced HTML    Acrobat PDF (914 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A complete theory describing the transmission of atomic vapor Faraday filters is developed. The dependence of the filter transmission on atomic density and external magnetic field strength, as well as the frequency dependence of transmission, are explained in physical terms. As examples, applications of the computed results to ongoing research to suppress sky background, thus allowing Na lidar operation under sunlit conditions, and to enable measurement of the density of mesospheric oxygen atoms are briefly discussed.

© 2009 Optical Society of America

OCIS Codes
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization
(260.5740) Physical optics : Resonance
(260.7490) Physical optics : Zeeman effect

ToC Category:
Physical Optics

History
Original Manuscript: September 8, 2008
Revised Manuscript: January 15, 2009
Manuscript Accepted: January 15, 2009
Published: March 11, 2009

Citation
S. D. Harrell, C.-Y. She, Tao Yuan, David A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, "Sodium and potassium vapor Faraday filters revisited: theory and applications," J. Opt. Soc. Am. B 26, 659-670 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-4-659


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett. 16, 867-869 (1991). [CrossRef] [PubMed]
  2. Y. Ohman, “On some new auxiliary instruments in astrophysical research VI. A tentative monochromator for solar work based on the principle of selective magnetic rotation,” Stockholms Obs. Ann. 19(4), 9-11 (1956).
  3. J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett. 16, 846-848 (1991). [CrossRef] [PubMed]
  4. Y. C. Chan and J. A. Gelbwachs, “A Fraunhofer-wavelength magnetooptic atomic filter at 422.7 nm,” IEEE J. Quantum Electron. 29, 2379-2384 (1993).
  5. G. Agnelli, A. Cacciani, and M. Fofi, “The magneto-optical filter I,” Sol. Phys. 44, 509-518 (1975). [CrossRef]
  6. H. Chen, C. Y. She, P. Searcy, and E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett. 18, 1019-1021 (1993). [CrossRef] [PubMed]
  7. Z. Hu, X. Sun, Y. Liu, L. Fu, and X. Zeng, “Temperature properties of Na dispersive Faraday optical filter at D1 and D2 line,” Opt. Commun. 156, 289-293 (1998). [CrossRef]
  8. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristics of potassium Faraday optical filter,” IEEE J. Quantum Electron. 37, 372-375 (2001).
  9. H. Chen, M. A. White, D. A. Krueger, and C. Y. She, “Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett. 21, 1093-1095 (1996). [CrossRef] [PubMed]
  10. C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, D. A. Krueger, H.-L. Liu, and M. E. Hagan, “Tidal perturbations and variability in the mesopause region over Fort Collins, CO (41 N, 105 W): Continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004). [CrossRef]
  11. T. G. Slanger, P. C. Cosby, D. L. Huestis, A. Saiz-Lopez, B. J. Murray, D. A. O'Sullivan, J. M. C. Plane, C. Allende Prieto, F. J. Martin-Torres, and P. Jenniskens, “Variability of the mesospheric nightglow sodium D2/D1 ratio,” J. Geophys. Res. 110, D23302 (2005). [CrossRef]
  12. P. Yeh, “Dispersive magnetooptic filters,” Appl. Opt. 21, 2069-2075 (1982). [PubMed]
  13. D. A. Van Baak, “Resonant Faraday rotation as a probe of atomic dispersion,” Am. J. Phys. 64, 724-735 (1996). [CrossRef]
  14. E. T. Dressler, A. E. Laux, and R. I. Billmers, “Theory and experiment for the anomalous Faraday effect in potassium,” J. Opt. Soc. Am. B 13, 1849-1857 (1996). [CrossRef]
  15. B. Yin and T. M. Shay, “Theoretical model for a Faraday anomalous dispersion optical filter,” Opt. Lett. 16, 1617-1619 (1991). [CrossRef] [PubMed]
  16. J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, 1994), Revised Ed., pp. 176-181.
  17. F. Schreier, “The Voigt and complex error function: A comparison of computational methods,” J. Quant. Spectrosc. Radiat. Transf. 48, 743-762 (1992). [CrossRef]
  18. A. Corney, Atomic and Laser Spectroscopy (Clarendon Press, 1977), pp. 667-674.
  19. Ref. p. 87.
  20. Interactive Data Language (ITT Corporation, Boulder, Colorado).
  21. K. S. Krane, Introductory Nuclear Physics (Wiley, 1988), pp. 602-651.
  22. Ref. pp. 822-833.
  23. N. J. Stone, “Table of nuclear magnetic dipole and electric quadrupole moments,” At. Data Nucl. Data Tables 90, 75-176 (2005). [CrossRef]
  24. E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31-75 (1977). [CrossRef]
  25. S. Falke, E. Tiemann, and C. Lisdat, “Transition frequencies of the D lines of K39, K40, and K41 measured with a femtosecond laser frequency comb,” Phys. Rev. A 74, 032503 (2006). [CrossRef]
  26. W. A. Van Wijngaarden and J. Li, “Measurement of hyperfine structure of sodium 3P1/2,3/2 states using optical spectroscopy,” Z. Phys. D: At., Mol. Clusters 32, 67-71 (1994). [CrossRef]
  27. Y. P. Gangrsky, D. V. Karaivanov, K. P. Marinova, B. N. Markov, L. M. Melnikova, G. V. Mishinsky, S. G. Zemlyanoi, and V. I. Zhemenik, “Hyperfine splitting and isotope shift in the atomic D2 line of Na22,23 and the quadrupole moment of Na22,” Eur. Phys. J. A 3, 313-318 (1998). [CrossRef]
  28. Yu. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD Team, “NIST Atomic Spectra Database” (National Institute of Standards and Technology, Gaithersburg, MD, 2008), version 3.1.4, ⟨http://physics.nist.gov/asd3⟩.
  29. W. L. Wiese, M. W. Smith, and B. M. Miles, “Atomic Transition Probabilities: Volume II, Sodium Through Calcium,” Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U. S.), 22.
  30. R. E. Honig and D. A. Kramer, “Vapor pressure data for the solid and liquid elements,” RCA Rev. 30, 285-305 (1969).
  31. W. Huang, X. Chu, B. P. Williams, S. D. Harrell, and J. Wiig, “Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere,” Opt. Lett. 34, 199-201 (2009). [CrossRef] [PubMed]
  32. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton U. Press, 1957), pp. 75-76.
  33. Ref. p. 111.
  34. Ref. pp. 125-127, 130-132.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited