OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 676–683

Generalized eigenproblem of hybrid matrix for Bloch–Floquet waves in one-dimensional photonic crystals

Jing Ning and Eng Leong Tan  »View Author Affiliations


JOSA B, Vol. 26, Issue 4, pp. 676-683 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000676


View Full Text Article

Enhanced HTML    Acrobat PDF (743 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a stable method for analysis of light propagation in one-dimensional photonic crystals that may be composed of general bianisotropic media. Our method is based on the solutions to a generalized eigenproblem of hybrid matrix. It enables Bloch–Floquet waves to be determined reliably and overcomes the numerical instability in the standard eigenproblem of transfer matrix. When the unit cell is lossy and electrically thick, the transfer matrix or its characteristic polynomial may become ill-conditioned, whereas the hybrid matrix is always well-conditioned. Using the imaginary part of Bloch–Floquet wavenumbers, we demonstrate that it is convenient to determine (if any) the frequency range of omnidirectional reflection. Some numerical results are illustrated to investigate the effects of chirality, loss, and tunable anisotropy.

© 2009 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(230.4170) Optical devices : Multilayers
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Materials

History
Original Manuscript: July 22, 2008
Revised Manuscript: December 14, 2008
Manuscript Accepted: January 29, 2009
Published: March 16, 2009

Citation
Jing Ning and Eng Leong Tan, "Generalized eigenproblem of hybrid matrix for Bloch-Floquet waves in one-dimensional photonic crystals," J. Opt. Soc. Am. B 26, 676-683 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-4-676


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995).
  4. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25-28 (1999). [CrossRef]
  5. P. St. J. Russell, S. Tredwell, and P. J. Roberts, “Full photonic bandgaps and spontaneous emission control in 1D multilayer dielectric structures,” Opt. Commun. 160, 66-71 (1999). [CrossRef]
  6. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998). [CrossRef] [PubMed]
  7. I. Abdulhalim, “Analytic propagation matrix method for anisotropic magneto-optic layered media,” J. Opt. A, Pure Appl. Opt. 2, 557-564 (2000). [CrossRef]
  8. E. Cojocaru, “Birefringence dispersion in solc-type anisotropic periodic bandgap structures,” Appl. Opt. 40, 1089-1097 (2001). [CrossRef]
  9. C. Vandenbem, J.-P. Vigneron, and J.-M. Vigoureux, “Tunable band structures in uniaxial multilayer stacks,” J. Opt. Soc. Am. B 23, 2366-2376 (2006). [CrossRef]
  10. P. Han and H. Wang, “Extension of omnidirectional reflection range in one-dimensional photonic crystals with a staggered structure,” J. Opt. Soc. Am. B 20, 1996-2001 (2003). [CrossRef]
  11. I. Nusinsky and A. A. Hardy, “Omnidirectional reflection in several frequency ranges of one-dimensional photonic crystals,” Appl. Opt. 46, 3510-3517 (2007). [CrossRef] [PubMed]
  12. Z. B. Ouyang, D. Mao, C. P. Liu, and J. C. Wang, “Photonic structures based on dielectric and magnetic one-dimensional photonic crystals for wide omnidirectional total reflection,” J. Opt. Soc. Am. B 25, 297-301 (2008). [CrossRef]
  13. Y. G. Boucher, J. Le Rouzo, and I. R. Mohamed, “Modified form birefringence in periodic multilayer structures including uniaxial anisotropic materials,” J. Opt. Soc. Am. B 25, 777-784 (2008). [CrossRef]
  14. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4 matrix formulation,” J. Opt. Soc. Am. 62, 502-510 (1972). [CrossRef]
  15. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742-756 (1979). [CrossRef]
  16. J. Lekner, “Light in periodically stratified media,” J. Opt. Soc. Am. A 11, 2892-2899 (1994). [CrossRef]
  17. M. V. Davidovich, J. V. Stephuk, and I. V. Shilin, “Waves in active and dissipative flat-layered periodic and pseudo-periodic structures,” Proc. SPIE 6537, 1-6 (2007).
  18. L. M. Barkovskii, G. N. Borzdov, and A. V. Lavrinenko, “Fresnel's reflection and transmission operators for stratified gyroanisotropic media,” J. Phys. A 20, 1095-1106 (1987). [CrossRef]
  19. S. M. Ali, T. M. Habashy, and J. A. Kong, “Spectral-domain dyadic Green's function in layered chiral media,” J. Opt. Soc. Am. A 9, 413-423 (1992). [CrossRef]
  20. H. D. Yang, “A spectral recursive transformation method for electromagnetic waves in generalized anisotropic media,” IEEE Trans. Antennas Propag. 45, 520-526 (1997). [CrossRef]
  21. V. Galdi and I. M. Pinto, “Derivation of high-order impedance boundary conditions for stratified coatings composed of inhomogeneous-dielectric and homogeneous-bianisotropic layers,” Radio Sci. 35, 287-303 (2000). [CrossRef]
  22. E. L. Tan, “Note on formulation of the enhanced scattering-(transmittance-) matrix approach,” J. Opt. Soc. Am. A 19, 1157-1161 (2002). [CrossRef]
  23. E. L. Tan, “Recursive asymptotic impedance matrix method for electromagnetic waves in bianisotropic Media,” IEEE Microw. Wirel. Compon. Lett. 16, 351-353 (2006). [CrossRef]
  24. E. L. Tan, “Hybrid-matrix algorithm for rigorous coupled-wave analysis of multilayered diffraction gratings,” J. Mod. Opt. 4, 417-428 (2006). [CrossRef]
  25. E. L. Tan, “Vector wave function expansions of dyadic Green's functions for bianisotropic media,” IEE Proc. Microwaves, Antennas Propag. 149, 57-63 (2002). [CrossRef]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  27. C. B. Moler and G. W. Stewart, “An algorithm for generalized matrix eigenvalue problems,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 10, 241-256 (1972). [CrossRef]
  28. X. Yang and T. X. Wu, “Physical properties of wave scattering by a chiral grating,” J. Opt. Soc. Am. A 21, 2109-2116 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited