OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 713–717

Greenberger–Horne–Zeilinger state generation among remote nodes

Yong-Hong Ma, Guo-Hui Yang, Qing-Xia Mu, and Ling Zhou  »View Author Affiliations

JOSA B, Vol. 26, Issue 4, pp. 713-717 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (145 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A scheme is proposed to generate multiatom entanglement among remote nodes connected by noisy channels. The noisy parameters are independent of the fidelity of the intended maximal entangled state. We show that those nonmaximal entangled states prepared in the present scheme can be used to implement quantum communication. Moreover, the scheme can be generalized to generate entanglement in N quantum nodes.

© 2009 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: September 5, 2008
Revised Manuscript: December 8, 2008
Manuscript Accepted: December 27, 2008
Published: March 17, 2009

Yong-Hong Ma, Guo-Hui Yang, Qing-Xia Mu, and Ling Zhou, "Greenberger-Horne-Zeilinger state generation among remote nodes," J. Opt. Soc. Am. B 26, 713-717 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993). [CrossRef] [PubMed]
  2. C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), p. 175.
  3. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932-5935 (1998). [CrossRef]
  4. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992). [CrossRef] [PubMed]
  5. Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D.J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998). [CrossRef]
  6. J. Hong and H. W. Lee, “Quasideterministic generation of entangled atoms in a cavity,” Phys. Rev. Lett. 89, 237901 (2002). [CrossRef] [PubMed]
  7. R. G. Unanyan and M. Fleischhauer, “Decoherence-free generation of many-particle entanglement by adiabatic ground-state transitions,” Phys. Rev. Lett. 90, 133601 (2003). [CrossRef] [PubMed]
  8. W. Lange and H. J. Kimble, “Dynamic generation of maximally entangled photon multiplets by adiabatic passage,” Phys. Rev. A 61, 063817 (2000). [CrossRef]
  9. E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Hroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997). [CrossRef]
  10. Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998). [CrossRef]
  11. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000). [CrossRef]
  12. C. Thiel, J. von Zanthier, T. Bastin, E. Solano, and G. S. Agarwal, “Generation of symmetric Dicke states of remote qubits with linear optics,” Phys. Rev. Lett. 99, 193602 (2007). [CrossRef]
  13. T. Bastin, C. Thiel, J. von Zanthier, L. Lamata, E. Solano, and G. S. Agarwal, “Operational monitoring of multi-qubit entanglement classes via tuning of local operations,” http://xxx.lanl.gov/abs/0710.3720.
  14. S. B. Zheng and G. C. Guo, “Teleportation of atomic states within cavities in thermal states,” Phys. Rev. A 63, 044302 (2001). [CrossRef]
  15. S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett. 87, 230402 (2001). [CrossRef]
  16. X. Wang, M. Feng, and B. C. Sanders, “Multipartite entangled states in coupled quantum dots and cavity QED,” Phys. Rev. A 67, 022302 (2003). [CrossRef]
  17. C. Marr, A. Beige, and G. Rempe, “Entangled-state preparation via dissipation-assisted adiabatic passages,” Phys. Rev. A 68, 033817 (2003). [CrossRef]
  18. Z. J. Deng, M. Feng, and K. L. Gao, “Simple scheme for generating an n-qubit W state in cavity QED,” Phys. Rev. A 73, 014302 (2006). [CrossRef]
  19. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024-2028 (2000). [CrossRef] [PubMed]
  20. L. M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003). [CrossRef] [PubMed]
  21. D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003). [CrossRef] [PubMed]
  22. T. Pellizzari, “Quantum networking with optical fibers,” Phys. Rev. Lett. 79, 5242-5245 (1997). [CrossRef]
  23. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006). [CrossRef] [PubMed]
  24. Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007). [CrossRef]
  25. P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007). [CrossRef]
  26. J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40, 4503 (2007). [CrossRef]
  27. C. S. Yu, X. X. Yi, H. S. Song, and D. Mei, “Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301 (2007). [CrossRef]
  28. T. Yamamoto, J. Shimamura, S. K. Zdemir, M. Koashi, and N. Imoto, “Faithful qubit distribution assisted by one additional qubit against collective noise,” Phys. Rev. Lett. 95, 040503 (2005). [CrossRef] [PubMed]
  29. X. H. Li, F. G. Deng, and H. Y. Zhou, “Faithful qubit transmission against collective noise without ancillary qubits,” Appl. Phys. Lett. 91, 144101 (2007). [CrossRef]
  30. J. Song, Y. Xia, and H. S. Song, “Quantum nodes for W-state generation in noisy channels,” Phys. Rev. A 78, 024302 (2008). [CrossRef]
  31. V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306 (2000). [CrossRef]
  32. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “A calcium ion in a cavity as a controlled single-photon source,” New J. Phys. 6, 95 (2004). [CrossRef]
  33. G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche, “Seeing a single photon without destroying it,” Nature (London) 400,239-242 (1999). [CrossRef]
  34. P. Grangier, J. A. Levenson, and J. P. Poizat, “Quantum non-demolition measurements in optics,” Nature (London) 396, 537-542 (1998). [CrossRef]
  35. S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Delglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446, 297-300 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited