OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 783–791

Compression of realistic laser pulses in hollow-core photonic bandgap fibers

Jesper Lægsgaard and Peter John Roberts  »View Author Affiliations


JOSA B, Vol. 26, Issue 4, pp. 783-791 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000783


View Full Text Article

Enhanced HTML    Acrobat PDF (1057 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dispersive compression of chirped few-picosecond pulses at the microjoule level in a hollow-core photonic bandgap fiber is studied numerically. The performance of ideal parabolic input pulses is compared to pulses from a narrowband picosecond oscillator broadened by self-phase modulation during amplification. It is shown that the parabolic pulses are superior for compression of high-quality femtosecond pulses up to the few-megawatts level. With peak powers of 5 10 MW or higher, there is no significant difference in power scaling and pulse quality between the two pulse types for comparable values of power, duration, and bandwidth. The same conclusion is found for the peak power and energy of solitons formed beyond the point of maximal compression. Long-pass filtering of these solitons is shown to be a promising route to clean solitonlike output pulses with peak powers of several MW.

© 2009 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 3, 2008
Revised Manuscript: February 12, 2009
Manuscript Accepted: February 18, 2009
Published: March 25, 2009

Citation
Jesper Lægsgaard and Peter John Roberts, "Compression of realistic laser pulses in hollow-core photonic bandgap fibers," J. Opt. Soc. Am. B 26, 783-791 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-4-783


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. J. S. De Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11, 2832-2837 (2003). [CrossRef] [PubMed]
  2. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tunnermann, “All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,” Opt. Express 11, 3332-3337 (2003). [CrossRef] [PubMed]
  3. C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, “A 158 fs5.3 nj fiber-laser system at 1 μm using photonic bandgap fibers for dispersion control and pulse compression,” Opt. Express 14, 6063-6068 (2006). [CrossRef] [PubMed]
  4. C. Billet, J. M. Dudley, N. Joly, and J. C. Knight, “Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm,” Opt. Express 13, 3236-3241 (2005). [CrossRef] [PubMed]
  5. J. Lægsgaard and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic bandgap fibers,” Opt. Express 16, 9628-9644 (2008). [CrossRef] [PubMed]
  6. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13, 6153-6159 (2005). [CrossRef] [PubMed]
  7. F. Gerome, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, “Delivery of sub-100 fs pulses through 8 m of hollow-core fiber using soliton compression,” Opt. Express 15, 7126-7131 (2007). [CrossRef] [PubMed]
  8. F. Gérôme, J. Dupriez, J. C. Knight, and W. J. Wadsworth, “High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling,” Opt. Express 16, 2381-2386 (2008). [CrossRef] [PubMed]
  9. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010-6013 (2000). [CrossRef] [PubMed]
  10. J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3, 597-603 (2007). [CrossRef]
  11. C. K. Nielsen, B. Ortac, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, “Self-starting self-similar all-polarization maintaining yb-doped fiber laser,” Opt. Express 13, 9346-9351 (2005). [CrossRef] [PubMed]
  12. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2, 58-73 (2008). [CrossRef]
  13. J. Lægsgaard, “Control of fiber laser mode-locking by narrow-band Bragg gratings,” J. Phys. B 41, 095401 (2008). [CrossRef]
  14. D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-pm femtosecond yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16, 14004-14014 (2008). [CrossRef] [PubMed]
  15. “JCMwave GmbH, www.jcmwave.com.”
  16. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, n2, and o2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 650-660 (1997). [CrossRef]
  17. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382-384 (1998). [CrossRef]
  18. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  19. C. Finot, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime,” Opt. Express 14, 3161-3170 (2006). [CrossRef] [PubMed]
  20. A. V. Gorbach and D. V. Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express 16, 4858-4865 (2008). [CrossRef] [PubMed]
  21. D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, “Generation of 63 fs4.1 mW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit,” Opt. Lett. 32, 2520-2522 (2007). [CrossRef] [PubMed]
  22. T. Schreiber, C. K. Nielsen, B. Ortac, J. Limpert, and A. Tünnermann, “Microjoule-level all-polarization-maintaining femtosecond fiber source,” Opt. Lett. 31, 574-576 (2006). [CrossRef] [PubMed]
  23. P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on yb-doped fiber amplification of VECSELs,” Opt. Express 14, 9611-9616 (2006). [CrossRef] [PubMed]
  24. B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44-48 (2009). [CrossRef]
  25. J. Lægsgaard has prepared a paper to be called “Soliton formation in hollow-core photonic bandgap fibers.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited