OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 797–804

Effect of high-dimensional entanglement of Laguerre–Gaussian modes in parametric downconversion

Daisuke Kawase, Yoko Miyamoto, Mitsuo Takeda, Keiji Sasaki, and Shigeki Takeuchi  »View Author Affiliations


JOSA B, Vol. 26, Issue 4, pp. 797-804 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000797


View Full Text Article

Enhanced HTML    Acrobat PDF (717 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We calculate the coincidence count probabilities when the photon pairs entangled in orbital angular momentum generated via spontaneous parametric downconversion are measured by using holograms with an m-fold dislocation, considering the nonzero crystal length. We find that the coincidence probabilities related to azimuthal changes in hologram positions deviate significantly from a sinusoidal curve, which has often been assumed in simple analyses. It is found that the main cause of this effect is the high-dimensional entanglement in Laguerre–Gaussian modes. We also find that the crystal length causes the hologram positions to change for the maximum coincidence probabilities.

© 2009 Optical Society of America

OCIS Codes
(050.4865) Diffraction and gratings : Optical vortices
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: August 6, 2008
Revised Manuscript: February 5, 2009
Manuscript Accepted: February 25, 2009
Published: March 26, 2009

Citation
Daisuke Kawase, Yoko Miyamoto, Mitsuo Takeda, Keiji Sasaki, and Shigeki Takeuchi, "Effect of high-dimensional entanglement of Laguerre-Gaussian modes in parametric downconversion," J. Opt. Soc. Am. B 26, 797-804 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-4-797


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185-8189 (1992). [CrossRef] [PubMed]
  2. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002). [CrossRef] [PubMed]
  3. R. Zambrini and S. M. Barnett, “Quasi-intrinsic angular momentum and the measurement of its spectrum,” Phys. Rev. Lett. 96, 113901 (2006). [CrossRef] [PubMed]
  4. G. F. Calvo, A. Picón, and R. Zambrini, “Measuring the complete transverse spatial mode spectrum of a wave field,” Phys. Rev. Lett. 100, 173902 (2008). [CrossRef] [PubMed]
  5. D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418-4421 (2000). [CrossRef] [PubMed]
  6. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002). [CrossRef] [PubMed]
  7. H. Nihira and C. R. Stroud, Jr., “Robust multipartite multilevel quantum protocols,” Phys. Rev. A 72, 022337 (2005). [CrossRef]
  8. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313-316 (2001). [CrossRef] [PubMed]
  9. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002). [CrossRef] [PubMed]
  10. N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O'Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93, 053601 (2004). [CrossRef] [PubMed]
  11. A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91, 227902 (2003). [CrossRef] [PubMed]
  12. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005). [CrossRef]
  13. D. Kawase, Y. Miyamoto, M. Takeda, K. Sasaki, and S. Takeuchi, “Observing quantum correlation of photons in Laguerre Gauss modes using Gouy phase,” Phys. Rev. Lett. 101, 050501 (2008). [CrossRef] [PubMed]
  14. G. Molina-Terriza, A. Vaziri, J. Řeháček, Z. Hradil, and A. Zeilinger, “Triggered qutrits for quantum communication protocols,” Phys. Rev. Lett. 92, 167903 (2004). [CrossRef] [PubMed]
  15. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88, 013601 (2002). [CrossRef] [PubMed]
  16. J. P. Torres, A. Alexandrescu, and L. Torner, “Quantum spiral bandwidth of entangled two-photon states,” Phys. Rev. A 68, 050301 (2003). [CrossRef]
  17. M. Stütz, S. Gröblachera, T. Jennewein, and A. Zeilinger, “How to create and detect N-dimensional entangled photons with an active phase hologram,” Appl. Phys. Lett. 90, 261114 (2007). [CrossRef]
  18. S. Franke-Arnold, S. M. Barnett, M. J. Padgett, and L. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65, 033823 (2002). [CrossRef]
  19. M. Padgett, J. Courtial, L. Allen, S. Franke-Arnold, S. Barnett, “Entanglement of orbital angular momentum for the signal and idler beams in parametric down-conversion,” J. Mod. Opt. 49, 777-785 (2003). [CrossRef]
  20. A. Ling, A. Lamas-Linares, and C. Kurtsiefer, “Absolute emission rates of spontaneous parametric down-conversion into single transverse Gaussian modes,” Phys. Rev. A 77, 043834 (2008). [CrossRef]
  21. S. S. R. Oemrawsingh, A. Aiello, E. R. Eliel, G. Nienhuis, and J. P. Woerdman, “How to observe high-dimensional two-photon entanglement with only two detectors,” Phys. Rev. Lett. 92, 217901 (2004). [CrossRef] [PubMed]
  22. S. S. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. 't Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,” Phys. Rev. Lett. 95, 240501 (2005). [CrossRef] [PubMed]
  23. S. S. Oemrawsingh, J. A. de Jong, X. Ma, A. Aiello, E. R. Eliel, G. W. 't Hooft, and J. P. Woerdman, “High-dimensional mode analyzers for spatial quantum entanglement,” Phys. Rev. A 73, 032339 (2006). [CrossRef]
  24. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “'Two-photon' coincidence imaging with a classical source,” Phys. Rev. Lett. 9, 113601 (2002). [CrossRef]
  25. S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high-quantum-efficiency single-photon counting system,” Appl. Phys. Lett. 74, 1063 (1999). [CrossRef]
  26. J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multi-photon counting using visible light photon counter,” Appl. Phys. Lett. 74, 902 (1999). [CrossRef]
  27. G. Molina-Terriza, S. Minardi, Y. Deyanova, C. I. Osorio, M. Hendrych, and J. P. Torres, “Control of the shape of the spatial mode function of photons generated in noncollinear spontaneous parametric down-conversion,” Phys. Rev. A 72, 065802 (2005). [CrossRef]
  28. A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007). [CrossRef]
  29. C. H. Monken, P. H. Souto Ribeiro, and S. Pádua, “Transfer of angular spectrum and image formation in spontaneous parametric down-conversion,” Phys. Rev. A 57, 3123-3126 (1998). [CrossRef]
  30. S. P. Walborn, A. N. de Oliveira, S. Pádua, and C. H. Monken, “Multimode Hong-Ou-Mandel interference,” Phys. Rev. Lett. 90, 143601 (2003). [CrossRef] [PubMed]
  31. For the cases where the Rayleigh range of the pump is smaller than the crystal length, L can be considered the Rayleigh range.
  32. G. F. Calvo, A. Picón, and A. Bramon, “Measuring two-photon orbital angular momentum entanglement,” Phys. Rev. A 75, 012319 (2007). [CrossRef]
  33. C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92, 127903 (2004). [CrossRef] [PubMed]
  34. M. P. van Exter, A. Aiello, S. S. R. Oemrawsingh, G. Nienhuis, and J. P. Woerdman, “Effect of spatial filtering on the Schmidt decomposition of entangled photons,” Phys. Rev. A 74, 012309 (2006). [CrossRef]
  35. This approximation is introduced to simplify the form of the mode function in position representation, which can be easily calculated numerically.
  36. J. P. Torres, Y. Deyanova, L. Torner, and G. Molina-Terriza, “Preparation of engineered two-photon entangled states for multidimensional quantum information,” Phys. Rev. A 67, 052313 (2003). [CrossRef]
  37. These parameters were determined for various experimental conditions.
  38. D. Kawase, S. Takeuchi, K. Sasaki, A. Wada, Y. Miyamoto, and M. Takeda, “Determining the optical axes of entangled Laguerre Gauss modes,” arXiv.org, arXiv:quant-ph/0602199v1.
  39. Note that for ∣m∣>1 there are more than one values of the distance d from the dislocation to the optical axis for which the minimum coincidence probability becomes 0. For the plots in Fig. , we selected the smallest values (d/w0=0.35 for m=2 and 0.26 for m=3) that meet this criterion. We have confirmed that the shape of the plots are almost the same even when we select other values of d for which the minimum coincidence becomes 0.
  40. One can easily confirm this fact by using a simple model assuming the state of the source is given by ∣Ψ⟩=α∣0⟩I∣0⟩S+β∣1⟩I∣−1⟩S and the detection basis states are ∣ψ⟩S=sinδS∣0⟩S+cosδS∣−1⟩S and ∣ψ⟩I=sinδI∣0⟩I+cosδI∣1⟩I.
  41. T. Nagata, R. Okamoto, J. L. O'Brien, K. Sasaki and S. Takeuchi, “Beating the standard quantum limit with four entangled photons,” Science 316, 726 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited