OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 813–818

Tunable Fano interference effect in coupled-microsphere resonator-induced transparency

Makoto Tomita, Kouki Totsuka, Ryosuke Hanamura, and Takahiro Matsumoto  »View Author Affiliations

JOSA B, Vol. 26, Issue 4, pp. 813-818 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (315 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated interference effect between two whispering gallery modes in a system of ultrahigh-Q silica microspheres in which the resonance frequencies of spheres were precisely controlled through thermal tuning. A symmetric transmission peak of coupled—resonator—induced transparency reshaped into a sharp asymmetric spectrum similar to Fano effect in atomic system as the resonance frequency of the second sphere was detuned. The resonance modes showed frequency shifts as a function of the coupling strength between the two spheres, indicating that two whispering gallery modes were configurationally mixed. The observations were compared with calculations and discussed using double-spiral structures in the phase space in the transmitted field.

© 2009 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.3160) Physical optics : Interference

ToC Category:
Physical Optics

Original Manuscript: December 15, 2008
Revised Manuscript: February 15, 2009
Manuscript Accepted: February 18, 2009
Published: March 26, 2009

Makoto Tomita, Kouki Totsuka, Ryosuke Hanamura, and Takahiro Matsumoto, "Tunable Fano interference effect in coupled-microsphere resonator-induced transparency," J. Opt. Soc. Am. B 26, 813-818 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003). [CrossRef] [PubMed]
  2. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005). [CrossRef]
  3. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621-623 (2002). [CrossRef] [PubMed]
  4. L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28, 592-594 (2003). [CrossRef] [PubMed]
  5. S. F. Preble, Q. Xu, and M. Lipson, “Changing the color of light in a silicon resonator,” Nat. Photonics 1, 293-296 (2007). [CrossRef]
  6. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005). [CrossRef] [PubMed]
  7. K. A. Fuller, “Optical resonances and two-sphere systems,” Appl. Opt. 30, 4716-4731 (1991). [CrossRef] [PubMed]
  8. S. Arnold, A. Ghaemi, P. Hendrie, and K. A. Fuller, “Morphological resonances detected from a cluster of two microspheres,” Opt. Lett. 19, 156-158 (1994). [CrossRef] [PubMed]
  9. T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-binding photonic molecule modes of resonant bispheres,” Phys. Rev. Lett. 82, 4623-4626 (1999). [CrossRef]
  10. Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437-2439 (2003). [CrossRef] [PubMed]
  11. B. M. Möller, U. Woggon, M. V. Artemyev, and R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70, 115323 (2004). [CrossRef]
  12. J. Scheuer and A. Yariv, “Sagnac effect in roupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006). [CrossRef] [PubMed]
  13. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004). [CrossRef] [PubMed]
  14. Q. Xu, P. Ding, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406-410 (2007). [CrossRef]
  15. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997). [CrossRef]
  16. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263-2265 (2004). [CrossRef]
  17. M. Hossein-Zadeh and K. J. Vahala, “Importance of intrinsic-Q in microring-based optical filters and dispersion-compensation devices,” IEEE Photon. Technol. Lett. 19, 1045-1047 (2008). [CrossRef]
  18. M. A. Popovic, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Multistage high-order microring-resonator add-drop filters,” Opt. Lett. 31, 2571-2573 (2006). [CrossRef] [PubMed]
  19. G. Lenz and C. K. Madsen, “General optical all-pass filter structures for dispersion control in WDM systems,” J. Lightwave Technol. 17, 1248-1254 (1999). [CrossRef]
  20. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004). [CrossRef]
  21. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36-42 (1997). [CrossRef]
  22. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-492 (2001). [CrossRef] [PubMed]
  23. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001). [CrossRef] [PubMed]
  24. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005). [CrossRef] [PubMed]
  25. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999). [CrossRef]
  26. A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005). [CrossRef]
  27. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006). [CrossRef] [PubMed]
  28. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007). [CrossRef] [PubMed]
  29. D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q-Han Park, Hongrok Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264, 163-168 (2006). [CrossRef]
  30. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961). [CrossRef]
  31. K. Totsuka and M. Tomita, “Slow and fast light in a microsphere-optical fiber system,” J. Opt. Soc. Am. B 23, 2194-2199 (2006). [CrossRef]
  32. K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, “Tuning of the Fano effect through a quantum dot in an Aharonov-Bohm interferometer,” Phys. Rev. Lett. 88, 256806-256809 (2002). [CrossRef] [PubMed]
  33. D. D. Smith and H. Chang, “Coherence phenomena in coupled optical resonators,” J. Mod. Opt. 51, 2503-2513 (2004).
  34. H. Chang and D. D. Smith, “Gain-assisted superluminal propagation in coupled optical resonators,” J. Opt. Soc. Am. B 22, 2237-2241 (2005). [CrossRef]
  35. U. Fano, “On the theory of imperfect diffraction gratings,” J. Opt. Soc. Am. 31, 213-222 (1941). [CrossRef]
  36. A. Chiba, H. Fujiwara, J.-I. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86, 261106-261108 (2005). [CrossRef]
  37. R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental corroboration of the theory of neutron resonance scattering,” Phys. Rev. 76, 308-311 (1949). [CrossRef]
  38. V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, “Tunneling into a single magnetic atom: spectroscopic evidence of the kondo resonance,” Science 280, 567-569 (1998). [CrossRef] [PubMed]
  39. J. Li, W.-D. Schneider, and R. Berndt, “Kondo scattering observed at a single magnetic impurity,” Phys. Rev. Lett. 80, 2893-2896 (1998). [CrossRef]
  40. J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589-591 (1997). [CrossRef]
  41. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908-910 (2002). [CrossRef]
  42. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited