OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 836–848

Photon-arrival detector with a controlled phase flip operation between a photon and a V-type atomic system

Kunihiro Kojima and Akihisa Tomita  »View Author Affiliations

JOSA B, Vol. 26, Issue 4, pp. 836-848 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (385 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a photon-arrival detector (PAD), which detects the arrival of a signal photon and simultaneously projects the signal input state to a single-photon state, with an atom-cavity system. In this proposal, use of a V-type system as the intracavity atom is discussed for implementing the PAD since V-type systems have been widely studied in the field of solid state, enabling us to miniaturize and integrate that implementation. The performance of the proposed PAD is evaluated for a specific method of the detection process. The proposed PAD is capable of repeating the procedure for detecting the arrival of input photons and it has improved the detection probability so that it has a higher quantum efficiency than those of conventional photodetectors.

© 2009 Optical Society of America

OCIS Codes
(040.5570) Detectors : Quantum detectors
(040.6070) Detectors : Solid state detectors
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

Original Manuscript: September 9, 2008
Revised Manuscript: December 12, 2008
Manuscript Accepted: February 11, 2009
Published: March 27, 2009

Kunihiro Kojima and Akihisa Tomita, "Photon-arrival detector with a controlled phase flip operation between a photon and a V-type atomic system," J. Opt. Soc. Am. B 26, 836-848 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennet, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993). [CrossRef]
  2. L.-M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004). [CrossRef] [PubMed]
  3. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995). [CrossRef] [PubMed]
  4. P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006). [CrossRef] [PubMed]
  5. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002). [CrossRef] [PubMed]
  6. Y. Wu, X. Li, L. M. Duan, D. G. Steel, and D. Gammon, “Density matrix tomography through sequential coherent optical rotations of an exciton qubit in a single quantum dot,” Phys. Rev. Lett. 96, 087402 (2006). [CrossRef] [PubMed]
  7. H. Kosaka, Y. Mitsumori, Y. Rikitake, and H. Imamura, “Polarization transfer from photon to electron spin in g factor engineered quantum wells,” Appl. Phys. Lett. 90, 113511 (2007). [CrossRef]
  8. H. Kosaka, H. Shigyou, Y. Mitsumori, Y. Rikitake, H. Imamura, T. Kutsuwa, K. Arai, and K. Edamatsu, “Coherent transfer of light polarization to electron spins in a semiconductor,” Phys. Rev. Lett. 100, 096602 (2008). [CrossRef] [PubMed]
  9. M. Tadic and F. M. Peeters, “Exciton states and oscillator strength in two vertically coupled InP/InGaP quantum discs,” J. Phys. Condens. Matter 16, 8633-8652 (2004). [CrossRef]
  10. H. Kosaka, D. S. Rao, H. D. Robinson, P. Bandaru, K. Makita, and E. Yablonovitch, “Single photoelectron trapping, storage, and detection in a field effect transistor,” Phys. Rev. B 67, 045104 (2003). [CrossRef]
  11. K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate,” Phys. Rev. A 70, 013810 (2004). [CrossRef]
  12. K. Kojima and A. Tomita, “Quantum-nondemolition measurement of photon arrival using an atom-cavity system,” Phys. Rev. A 75, 032320 (2007). [CrossRef]
  13. K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “A study on the shape of two-photon wavefunctions after the nonlinear interaction with a one-dimensional atom,” arXiv.org quant-ph/0404119.
  14. T. Nakaoka, E. C. Clark, H. J. Krenner, M. Sabathil, M. Bichler, Y. Arakawa, G. Abstreiter, and J. J. Finley, “Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule,” Phys. Rev. B 74, 121305 (2006). [CrossRef]
  15. G. Fasol, “Absence of low temperature saturation of electron-electron scattering in a single mode quantum wire,” Appl. Phys. Lett. 61, 831-834 (1992). [CrossRef]
  16. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).
  17. S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, “Coherent photonic coupling of semiconductor quantum dots,” Opt. Lett. 31, 1738-1740 (2006). [CrossRef] [PubMed]
  18. M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007). [CrossRef]
  19. C. J. Hood and H. J. Kimble, “Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity,” Phys. Rev. A 64, 033804 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited