OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 1008–1017

Phase sensitive detection of vibrational optical activity free-induction-decay: vibrational CD and ORD

Hanju Rhee, Young-Gun June, Zee Hwan Kim, Seung-Joon Jeon, and Minhaeng Cho  »View Author Affiliations

JOSA B, Vol. 26, Issue 5, pp. 1008-1017 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (451 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical activity is manifested by chiral molecules including natural products and drugs, so that circular dichroism (CD) and optical rotatory dispersion (ORD) measurements can provide invaluable information on their chiro-optical properties and structures. It is experimentally demonstrated that heterodyne-detected Fourier-transform spectral interferometry with a femtosecond infrared pulse can be used to fully characterize the phase and amplitude of vibrational optical activity free-induction-decay field. The measured spectral interferograms are then converted to the linear optical activity susceptibility whose imaginary and real parts correspond to vibrational CD and ORD spectra. Unlike the conventional differential measurement technique, the present method based on a heterodyned interferometry is shown to be quite robust and stable. We anticipate that the present vibrational optical activity measurement technique will be of critical use in elucidating chiro-optical properties and structural changes in biomolecules.

© 2009 Optical Society of America

OCIS Codes
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6530) Spectroscopy : Spectroscopy, ultrafast

ToC Category:

Original Manuscript: January 23, 2009
Revised Manuscript: March 9, 2009
Manuscript Accepted: March 10, 2009
Published: April 16, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Hanju Rhee, Young-Gun June, Zee Hwan Kim, Seung-Joon Jeon, and Minhaeng Cho, "Phase sensitive detection of vibrational optical activity free-induction-decay: vibrational CD and ORD," J. Opt. Soc. Am. B 26, 1008-1017 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Circular Dichroism: Principles and Applications, edited by N.Berova, K.Nakanishi, and R.W.Woody (Wiley-VCH, 2000).
  2. H. Rhee, J.-H. Ha, S.-J. Jeon, and M. Cho, “Femtosecond spectral interferometry of optical activity: theory,” J. Chem. Phys. 129, 094507 (2008). [CrossRef] [PubMed]
  3. H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310-313 (2008). [CrossRef]
  4. L. Lepetit, G. Cheriaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467-2474 (1995). [CrossRef]
  5. D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbugel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,” Opt. Lett. 21, 884-886 (1996). [CrossRef] [PubMed]
  6. W. J. Walecki, D. N. Fittinghoff, A. L. Smirl, and R. Trebino, “Characterization of the polarization state of weak ultrashort coherent signals by dual-channel spectral interferometry,” Opt. Lett. 22, 81-83 (1997). [CrossRef] [PubMed]
  7. A. Albrecht Ferro, J. D. Hybl, and D. M. Jonas, “Complete femtosecond linear free induction decay, Fourier algorithm for dispersion relations, and accuracy of the rotating wave approximation,” J. Chem. Phys. 114, 4649-4656 (2001). [CrossRef]
  8. M. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U.S.A. 98, 11265-11270 (2001). [CrossRef] [PubMed]
  9. M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258-5279 (2003). [CrossRef]
  10. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625-628 (2005). [CrossRef] [PubMed]
  11. T. H. Zhang, C. N. Borca, X. Li, and S. T. Cundiff, “Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization,” Opt. Express 13, 7432-7441 (2005). [CrossRef] [PubMed]
  12. S.-H. Lim, A. G. Caster, and S. R. Leone, “Fourier transform spectral interferometric coherent anti-Stokes Raman scattering (FTSI-CARS) spectroscopy,” Opt. Lett. 32, 1332-1334 (2007). [CrossRef] [PubMed]
  13. M. Cho, H. M. Vaswani, T. Brixner, J. Stenger, and G. R. Fleming, “Exciton analysis in 2D electronic spectroscopy,” J. Phys. Chem. B 109, 10542-10556 (2005). [CrossRef]
  14. D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571-579 (1993). [CrossRef]
  15. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792-794 (1998). [CrossRef]
  16. R. Loudon, The Quantum Theory of Light (Oxford University Press, 1983).
  17. T. J. Bridges and J. W. Kluver, “Dichroic calcite polarizers for the infrared,” Appl. Opt. 4, 1121-1125 (1965). [CrossRef]
  18. E. Hecht, Optics (Addison-Wesley Longman, 1998).
  19. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).
  20. C. Guo, R. D. Shah, R. K. Dukor, T. B. Freedman, X. Cao, and L. A. Nafie, “Fourier transform vibrational circular dichroism from 800 to 10,000 cm−1: near-IR-VCD spectral standards for terpenes and related molecules,” Vib. Spectrosc. 42, 254-272 (2006). [CrossRef]
  21. K.-K. Lee, S. Hahn, K.-I. Oh, J. S. Choi, C. Joo, H. Han, and M. Cho, “Structure of N-acetylproline amide in liquid water: experimentally measured and numerically simulated infrared and vibrational circular dichroism spectra,” J. Chem. Phys. 110, 18834-18843 (2006). [CrossRef]
  22. K.-K. Lee, K.-I. Oh, H. Lee, C. Joo, H. Han, and M. Cho, “Dipeptide structure determination by vibrational circular dichroism combined with quantum chemistry calculations,” ChemPhysChem 8, 2218-2226 (2007). [CrossRef] [PubMed]
  23. V. B. Schrader and E. H. Korte, “Infrarot-rotationsdispersion (IRD),” Angew. Chem. 84, 218-219 (1972). [CrossRef]
  24. Y. N. Chirgadze, S. Y. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers 10, 809-820 (1971). [CrossRef] [PubMed]
  25. J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289-294 (1985). [CrossRef]
  26. R. A. Goldbeck, D. B. Kim-Shapiro, and D. S. Kliger, “Fast natural and magnetic circular dichroism spectroscopy,” Annu. Rev. Phys. Chem. 48, 453-479 (1997). [CrossRef] [PubMed]
  27. X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism spectroscopy: experimental details and applications,” Rev. Sci. Instrum. 60, 2614-2627 (1989). [CrossRef]
  28. X. Xie and J. D. Simon, “Picosecond circular dichroism spectroscopy: a Jones matrix analysis,” J. Opt. Soc. Am. B 7, 1673-1684 (1990). [CrossRef]
  29. X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism study of protein relaxation in myoglobin following photodissociation of CO,” J. Am. Chem. Soc. 112, 7802-7803 (1990). [CrossRef]
  30. M. Bonmarin and J. Helbing, “A picosecond time-resolved vibrational circular dichroism spectrometer,” Opt. Lett. 33, 2086-2088 (2008). [CrossRef] [PubMed]
  31. C. Niezborala and F. Hache, “Measuring the dynamics of circular dichroism in a pump-probe experiment with a Babinet-Soleil compensator,” J. Opt. Soc. Am. B 23, 2418-2424 (2006). [CrossRef]
  32. C. Niezborala and F. Hache, “Conformational changes in photoexcited (R)-(+)-1,1′-bi-2-naphthol studied by time-resolved circular dichroism,” J. Am. Chem. Soc. 130, 12783-12786 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited