OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 1018–1022

Light-induced scattering of femtosecond laser pulses in iron-doped lithium niobate crystals

Johanna Bückers, Dominik Maxein, Daniel Haertle, and Karsten Buse  »View Author Affiliations

JOSA B, Vol. 26, Issue 5, pp. 1018-1022 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (261 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Self-amplification of weak scattered coherent light waves in photorefractive crystals leads to losses, known as light-induced scattering or holographic scattering. We find with 532 nm light that it is reduced in Li Nb O 3 : Fe for femtosecond laser pulses as compared to cw laser light. Light-induced scattering of pulses is completely absent in samples with sufficiently small Fe 2 + content, in contrast to the scattering of cw light. Additional differences include a slower buildup time, a weaker Bragg selectivity, and a narrower angular distribution of the scattered light for pulsed illumination. The differences can be attributed mainly to the smaller temporal coherence of pulses.

© 2009 Optical Society of America

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(160.3730) Materials : Lithium niobate
(160.5320) Materials : Photorefractive materials

ToC Category:

Original Manuscript: December 2, 2008
Revised Manuscript: March 16, 2009
Manuscript Accepted: March 16, 2009
Published: April 16, 2009

Johanna Bückers, Dominik Maxein, Daniel Haertle, and Karsten Buse, "Light-induced scattering of femtosecond laser pulses in iron-doped lithium niobate crystals," J. Opt. Soc. Am. B 26, 1018-1022 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Magnusson and T. K. Gaylord, “Laser scattering induced holograms in lithium niobate,” Appl. Opt. 13, 1545-1548 (1974). [CrossRef]
  2. S. G. Odoulov and M. S. Soskin, “Amplification, oscillation, and light-induced scattering in photorefractive crystals,” in Photorefractive Materials and Their Applications II, 1st ed. (Springer-Verlag, 1989), Chap. 1, pp. 5-43. [CrossRef]
  3. G. Barbastathis, M. Balberg, and D. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811-813 (1999). [CrossRef]
  4. W. Liu, D. Psaltis, and G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854-856 (2002). [CrossRef]
  5. K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, 2nd ed. (Springer Science+Business Media, LLC, 2007), Chap. 11, pp. 295-319. [CrossRef]
  6. P.Boffi, D.Piccinin, and M.C.Ubaldi, eds., Infrared Holography for Optical Communications (Springer-Verlag, 2003). [CrossRef]
  7. D. Z. Anderson, D. M. Lininger, and J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123-125 (1987). [CrossRef] [PubMed]
  8. M. Woerdemann, F. Holtmann, and C. Denz, “Full-field particle velocimetry with a photorefractive optical novelty filter,” Appl. Phys. Lett. 93, 021108 (2008). [CrossRef]
  9. P.Günter and J.-P.Huignard, eds., Photorefractive Materials and Their Applications 3 (Springer Science+Business Media, LLC, 2007).
  10. R. A. Rupp, “Material characterization by holographic methods,” Appl. Phys. A 55, 2-20 (1992). [CrossRef]
  11. M. Goulkov, M. Imlau, and T. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77, 235110 (2008). [CrossRef]
  12. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72-74 (1966). [CrossRef]
  13. R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, and E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23, 2136-2141 (1987). [CrossRef]
  14. Q. Wu, J. Xu, G. Zhang, L. Zhao, X. Zhang, H. Qiao, Q. Sun, W. Lu, G. Zhang, and T. Volk, “Fanning scattering in LiNbO3 at 750-850 nm induced by femtosecond laser pulses,” Opt. Mater. (Amsterdam, Neth.) 23, 277-280 (2003).
  15. G. Peterson, A. Glass, and T. Negran, “Control of susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130-132 (1971). [CrossRef]
  16. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods,” Appl. Phys. 12, 355-368 (1977). [CrossRef]
  17. B. I. Sturman, S. G. Odoulov, and M. Y. Goulkov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197-254 (1996). [CrossRef]
  18. G. Zhang, N. Y. Kamber, J. Xu, S. Liu, Q. Sun, and G. Zhang, “Light-amplification competition between fanning noise and the signal beam in doped lithium niobate crystals,” J. Opt. Soc. Am. B 16, 905-910 (1999). [CrossRef]
  19. E. M. Avakyan, K. G. Belabaev, and S. G. Odulov, “Polarized-anisotropy light-induced scattering in LiNbO3:Fe crystals,” Fiz. Tverd. Tela (Leningrad) 25, 3274-3281 (1983).
  20. S. Liu, J. Xu, G. Zhang, and Y. Wu, “Light-climbing effect in LiNbO3:Fe crystal,” Appl. Opt. 33, 997-999 (1994).
  21. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M.-S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals.1: Steady-state,” Ferroelectrics 22, 949-960 (1979). [CrossRef]
  22. H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
  23. S. Tao, Z. H. Song, and D. R. Selviah, “Bragg-shift of holographic gratings in photorefractive Fe:LiNbO3 crystals,” Opt. Commun. 108, 144-152 (1994). [CrossRef]
  24. K. Buse, S. Kämper, J. Frejlich, R. Pankrath, and K. H. Ringhofer, “Tilting of holograms in photorefractive Sr0.61Ba0.39Nb2O6 crystals by self-diffraction,” Opt. Lett. 20, 2249-2251 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited